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Physics-Informed Neural Networks (PINNs) have gained significant attention in the field

of deep learning for their ability to tackle physical scenarios, gaining significant interest

since its inception in scientific literature [1]. These networks optimize neural architectures

by incorporating inductive biases derived from knowledge of physics. To embed the un-

derlying physics, a suitable loss function is defined, encompassing the necessary physical

constraints. PINNs have proven versatile in comprehending and resolving diverse physical

systems, resulting in their growing popularity in machine learning research and their direct

application in various scientific domains [2]. However, to accurately represent and solve sys-

tems of differential equations with discontinuous solutions, modifications to the fundamental

algorithms of PINNs are necessary.

We present a novel approach called Gradient-Annihilated Physics-Informed Neural Net-

works (GA-PINNs) [3] for solving partial differential equations with discontinuous solutions.

GA-PINNs use a modified loss function and weighting function to ignore high gradients

in physical variables. The method demonstrates excellent performance in solving Riemann

problems in special relativistic hydrodynamics. The results obtained by GA-PINNs accu-

rately describe the propagation speeds of discontinuities and outperform a baseline PINN

algorithm. Moreover, GA-PINNs avoid the costly recovery of primitive variables, a draw-

back in grid-based solutions of relativistic hydrodynamics equations. This approach shows

promise for modeling relativistic flows in astrophysics and particle physics with discontinuous

solutions.
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