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How many ATP’s does it cost to run a functional biochemical circuit? 
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Schrödinger’s Question

“…life feeds on negative entropy…” – Erwin Schrodinger

(1944)

How are living (biological) systems different from non-living (physical) systems? 

Life costs free energy



Central Question: How do living systems process information accurately 
with noisy components and stochastic reactions?

DNA Replication Pattern Formation
(drosophila (fruit fly) embryo)

(1) How?  à Molecular Mechanism and Design Principles

(2) How much? à Energy Cost for Biological Functions

• Biological systems are noisy – small # of molecules, stochastic reactions, thermal 
fluctuation (room temperature), noisy neuron firing patterns,….

Learning/memory ...Circadian rhythm
(Cyanobacteria)



Cost of information processing: Landauer’s Principle 

Landauer's Principle, motivated by Von Neumann,
Rolf Landauer shows that "any logically irreversible
manipulation of information, such as the erasure of a
bit or the merging of two computation paths, must be
accompanied by a corresponding entropy increase in
non-information bearing degrees of freedom of the
information processing apparatus or its environment".

Each bit of lost information will cost a minimum of
kTln(2) of free energy.

Rolf Landauer

John Von Neumann

-- IBM Journal Res. Dev., July 1961

What about the energy cost of information processing in biological systems?



How is free energy used in living systems?

• Molecular 
Motors

• Biological 
Synthesis 

Free 
energy 

Mechanical work

Free 
energy 

Chemical bonds

Kinesin walking 
on microtubule



Different uses of energy in living systems

(Bruce Alberts, et al)

ATP is the universal “energy currency”,
which drives the non-equilibrium processes 

of living systems.

Synthesis Transport & Motility Pump & Heat 

Information processing
(Regulation, Control, Memory, 

Computing, etc..)



Engineered systems
Designed to consume energy to carry out desired work 

Mechanical Motion
IBM BlueGene Supercomputer

BlueGene Chips

Computing

5% of all energy 
consumption in the 
U.S. goes just to 
running computers 
--10/2018



Biological machines
Evolved to consume energy to carry out desired functions 

Information Processor 
(Computing machine)

• Biochemical network

• Neural network

Nano-BioMotor
( Mechanical machine)

What’s the energy cost of running these biochemical circuits?



An earlier example: the kinetic proof-reading mechanism

Jacque Ninio & John Hopfield

Charlie Bennett

Thermodynamics of kinetic proofreading
free energy dissipation (cost)

𝑝 → 𝑝!

10-3 10-6à



The Onsager reciprocal relations

The Onsager Reciprocal Relationships, Detailed Balance, and the Cycle Rule

The cycle rule

(Lars Onsager)

Detailed balance
𝒌𝑨𝑩

𝒌𝑩𝑨



𝑱

Biochemical systems are far from equilibrium

Terrell Hill

𝑘!𝑘"𝑘# ≠ 𝑘$!𝑘$"𝑘$#

Thermodynamic force: Δ𝜇 = 𝑘%𝑇 ln
𝑘!𝑘"𝑘#

𝑘$!𝑘$"𝑘$#

Persistent current J 
in steady state: J=𝑘"𝑃% − 𝑘$"𝑃& =

'!'"'#$'$!'$"'$#
…)*+ ,- . (01) 345+) …

The cycle rule (or DB )
is broken: 

Continuous energy dissipation (power consumption) is needed 
to maintain a non-equilibrium steady state 

Free energy dissipation rate: �̇� = 𝐽×𝛥𝜇 ≥ 0

ATP

ADP+Pi



How living systems use energy to fight the 2nd law of thermodynamics

to create biological order or maintain biological functions

I. Ultra-sensitive biochemical switch 

II. Sensory adaptation

III. Biochemical oscillations

IV. Synchronization

V. Pattern formation
.
.



I. The energy cost of ultra-sensitivity in the bacterial flagellar motor switch 

A B

Fig. 1. (A) Schematic view of the experimental appa-
ratus. We modified an inverted Zeiss microscope to
perform FCS measurements on individual cells. The cell
was specifically attached by its flagella onto a micro-
scope slide. A 0.5-!m latex bead (Polyscience), at-
tached to a flagellum with rabbit antibodies to flagellin,

is used as a marker to visualize a free rotating flagellum. The CW bias was computed as the ratio of the time spent in CW to the total time duration.
The FCS technique allowed us to measure GFP-tagged protein concentration in the same bacterium. The fluctuations of the total fluorescence intensity
were processed in real time by a correlator (ALV-5000/E) that provided an autocorrelation function (14). CCD, charge-coupled device. (Inset) A
dark-field illumination (red light) was used to record the rotation of a single flagellum of a bacterium attached to a cover slip. For clarity, only three
images, 1/15 s apart, were superimposed to show the circular trajectory of the bead. [When a bead was attached to several flagella, its trajectory was
no longer circular and it moved erratically. Here, the bead was rotating CCW, a state corresponding to smooth swimming (9)]. (B) Typical
autocorrelation function measured for diffusing CheY-P–GFP molecules in a single cell. The amplitude of the autocorrelation function at the intercept
with the vertical axis is inversely equal to the number of molecules (N) in the detection volume. We fit this function (continuous red line) with G(t ) "
1/N[1 # (4Dt/$2)]%1, which describes two-dimensional translational diffusion (15). D is the diffusion constant of the fluorescent molecules, t is the
time variable, and 2$ " 0.3 !m is the diameter of the detection volume in our experimental configuration; one molecule in this volume represented
a concentration of 44 nM. The autocorrelation functions were measured from acquisitions of 7 s. The average diffusion constant of the cytoplasmic
CheY-GFP fusion, evaluated from this fit, was 4.6 & 0.8 !m2 s%1 (16). (Inset) A typical calibration curve, providing a linear relation between
concentration of CheY-P–GFP and the fluorescent light intensity for five individual cells. Protein concentrations on this curve were obtained with the
FCS technique. We then used the calibration curve to convert fluorescence intensity into GFP concentration in those cells whose flagellar rotation was
monitored. This method reduced the photobleaching of GFP by measuring the fluorescence intensity for only 0.5 s (17).

Fig. 2. (A) Characteris-
tic response of individ-
ual motors as a func-
tion of CheY-P con-
centration. Each data
point describes a si-
multaneous measure-
ment of the motor
bias and the CheY-P
concentration in an in-
dividual bacterium.
The CW bias was com-
puted by analyzing
video recordings for at
least 1 min. We intro-
duced the cheY-gfp
(13) fusion gene into
the strain PS2001. It is
believed that in this
strain, all CheY mole-
cules are phosphoryl-
ated (12). Cells were
grown from an over-
night culture in tryptone broth at 30°C and then harvested (absor-
bance " 0.5 at 595 nm). To cover the whole range of motor response,
we grew cells with three different IPTG concentrations (0, 5, and 10
!M) and then washed and resuspended them in minimum medium !.
The second set of experiments was also performed to check whether
the folding kinetics of the GFP would affect the CheY-P activity under
our experimental conditions. The expression of CheY-P–GFP fusion
was monitored after the Luria-Bertoni (LB) medium was saturated
with 10 mM IPTG. While the cells were expressing the CheY-P–GFP
fusion, the motors’ bias would increase and follow the same sigmoid
curve (21). Time points correspond to 18, 28, and 33 min for !, to 60
and 69 min for f, and to 17, 23, and 26 min for Œ, after the IPTG was

added. The dashed line shows the best fit obtained with a Hill function
(Hill coefficient NH " 10.3 & 1.1 and KM " 3.1 !M). Motors were
locked in (CW) state for tested CheY-P concentrations ranging from
'4.6 to 25 !M (27). (B) Switching frequency, F, measured from the
same cells as in (A). F was defined as the number of times that a
motor switched its direction of rotation divided by the duration of the
recording. In agreement with previous observations, we observe that
the data points for the switching frequency are more scattered than
those obtained for the motor bias (5). The dashed line gives the first
derivative of the Hill function [from (A)] with respect to [CheY-P].
It is interesting to note that F qualitatively behaves as F ' [((CW-
bias)/(C], where C is [CheY-P].
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An Ultrasensitive Bacterial
Motor Revealed by Monitoring
Signaling Proteins in Single Cells

Philippe Cluzel,1* Michael Surette,2 Stanislas Leibler1

Understanding biology at the single-cell level requires simultaneous measure-
ments of biochemical parameters and behavioral characteristics in individual
cells. Here, the output of individual flagellar motors in Escherichia coli was
measured as a function of the intracellular concentration of the chemotactic
signaling protein. The concentration of thismolecule, fused to green fluorescent
protein, was monitored with fluorescence correlation spectroscopy. Motors
from different bacteria exhibited an identical steep input-output relation, sug-
gesting that they actively contribute to signal amplification in chemotaxis. This
experimental approach can be extended to quantitative in vivo studies of other
biochemical networks.

Biochemical networks have been the object
of intensive experimental and theoretical
studies. The understanding of their function-
ing relies mainly on data collected from pop-
ulations rather than from single cells (1).
When phenotypic variability is observed,
however, single-cell measurements become
indispensable (2). Here, we present an exper-
imental method to correlate intracellular en-
zyme concentrations with behavioral charac-
teristics in single cells. We adopted this ap-
proach to characterize, in Escherichia coli,
the output device of the chemotactic net-
work—an individual flagellar motor. Mea-
suring the input-output characteristics of mo-
tors may be relevant for understanding the
high amplification gain in the chemotactic
sensory system (3). In measurements over
bacterial populations (4–6), its input-output
characteristic was found to be too mild to
contribute substantially to the observed high
amplification of the chemotaxis system. Sev-
eral molecular mechanisms of amplification,
such as clustering of receptors (7), were thus
subsequently proposed.

E. coli is propelled by several flagella.
Each flagellum rotates under the action of a
rotary motor (8). When motors rotate coun-
terclockwise (CCW), the flagella form a bun-
dle and the bacterium swims smoothly (9);
when motors rotate clockwise (CW), the bun-
dle flies apart and the bacterium tumbles in
an erratic fashion. Tumble events randomize
the cell trajectory, and the modulation of their
occurrence allows bacteria to perform che-
motaxis by swimming toward attractants or

away from repellents (10). Specific receptors
detect changes of environmental chemical
concentrations and send a signal through the
chemotactic network to the flagellar motors.
CheY-phosphate (CheY-P) is the output of
the signal transduction network. CheY-P
binds preferentially to the motor (11), and the
CW bias of the flagellar motors, that is, the
fraction of time that a single motor spends
rotating in the CW direction, increases with
CheY-P concentration [CheY-P] (4).

The experiment described here was de-
signed to determine, in single cells, the bias
of individual motors as a function of [CheY-
P]. The intracellular concentration of chemo-
tactic proteins fused to the green fluorescent
protein (GFP) was measured directly in indi-
vidual cells of E. coli. To control the expres-
sion levels of CheY-P, we transformed the
PS2001 strain of E. coli, lacking the cheY
gene (12), with an inducible lac promoter
plasmid expressing a cheY-gfp fusion gene
(13). To our knowledge, there is no technique
for measuring the phosphorylation levels of
CheY-GFP in vivo. Therefore, a reliance on
in vitro kinase activity measurements (12)
reinforced the hypothesis that the entire pool
of CheY molecules is phosphorylated in the
transformed PS2001 strain (4).

Cell bodies were immobilized and specif-
ically attached onto microscope slides so that
some of the flagella were free to rotate. Ro-
tating flagella were marked with latex mi-
crobeads to visualize their rotation with a
dark-field illumination. The CW bias was
obtained from analysis of video recordings
(Fig. 1A).

An apparatus based on the fluorescence
correlation spectroscopy (FCS) technique
(14–18), mounted on an inverted microscope
(Fig. 1A), allowed us to measure in vivo the
concentration of proteins fused to GFP and to
monitor behavioral cellular characteristics
(CW bias). We focused the incident excita-

tion laser beam onto a small volume of the
cell and collected, in a confocal geometry, the
fluorescence light emitted by the GFP mole-
cules. Because the fluorescence intensity did
not depend on the position of the illumination
spot, we supposed that the expression of
CheY-GFP was homogenous within a single
cell. We obtained absolute concentration of
CheY-GFP fusion, with less than 15% error
in measured levels, by analyzing fluctuations
of the fluorescence intensity (Fig. 1B).

Bacteria PS2001 strain did not tumble;
motors were always in CCW state. Tumbling
was restored when the CheY-GFP fusion was
expressed from inducible plasmids (19). For
a given concentration of inducer (isopropyl-
!-D-thiogalactoside, IPTG), the cell-to-cell
concentration [CheY-P] was widely distrib-
uted around a mean value (ranging from 0.8
to 6 "M), with the typical standard deviation
of #24% of the mean. We used three IPTG
concentrations (0, 5, and 10 "M) to cover the
whole range of [CheY-P] to determine the
motor characteristics.

When the CW bias for individual cells
was plotted versus their internal [CheY-P]
(Fig. 2A), we found that the CW bias mea-
sured from different cells, preinduced with
various inducer levels, fell onto the same
sigmoid curve. When an induction process
was followed for an individual cell, the ac-
tivity of CheY-P and the GFP fluorescence
were also observed to correlate (20). Thus,
within experimental resolution, individual
motors were characterized by a uniform in-
put-output relation (21). This remarkable uni-
formity of the motor characteristics also pro-
vided an internal control of the consistency of
our measurements.

The sigmoid characteristics of the flagel-
lar motors cannot be well fitted by a Hill
function in the whole range of concentrations
(Fig. 2A). However, a Hill plot of our data for
the bias values between 0.1 and 0.9 leads to
an apparent slope of #10.3 $ 1.1 [with
dissociation constant (K) % 3.1 "M/s] (19,
22). Previous experiments (4–6) reported
much lower values for the Hill coefficient,
ranging from 3.5 to 5.5. To explain this dis-
crepancy, one should note that previous at-
tempts to characterize flagellar motors were
made by averaging the protein concentrations
over cell populations. This averaging effec-
tively smoothed out the characteristics of mo-
tors, leading to lower values of the Hill co-
efficient (23).

We measured independently the switching
frequency between CW and CCW states (Fig.
2B). It was peaked strongly around [CheY-P]
#3 "M, about the same concentration for
which the CW bias is equal to 0.5.

The uniformity of the motor characteristic
suggests that some of the structural features
of the motors may be rather tightly regulated.
Physiological measurements of the behavior

1Departments of Physics and of Molecular Biology,
Princeton University, Princeton, NJ 08544, USA. 2De-
partment of Microbiology and Infectious Diseases,
University of Calgary, Calgary, Alberta, Canada T2N
4N1.
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CWCCW
+CheY-P

-- CheY-P

Ẇ ! kBT !
!AB"

#JAB " JBA$ ln" JAB

JBA
# , [3]

where the sum is over all pairs of states !AB", JAB is the
probability f lux from state A to state B. The net flux from A to
B: %JAB & JAB ' JBA is nonzero only in nonequilibrium systems
because of the breakdown of detailed balance. In fact, measure-
ments of this net flux can be used to directly test the validity of
the nonequilibrium models (see SI Text for a detailed calculation
of these fluxes). The average energy dissipated per switch cycle
(CCW to CW to CCW) is %W ( (#1 ) #0)Ẇ, where #0 and #1 are
the average dwell time for CW and CCW states, respectively. In
Fig. 3B, the energy dissipation %W/kBT and the Hill coefficient
of the corresponding response curve Heff & 2 * d(lnBCW)/
d(ln[Y])$BCW ( 0.5 for given values of $ are plotted together. Our
result clearly shows that in our nonequilibrium model, sensitivity
is powered by energy dissipation, and more energy is needed to
generate higher sensitivity (Heff). Eventually, Heff is limited by
the size of the operation range %n, as shown in Fig. 4, where Heff
is plotted versus the energy dissipation %W/kBT for different
values of %n.

Despite the different origins of the equilibrium ($ ( 1, C +
1) and the nonequilibrium ($ , 1) mechanisms for high sensi-
tivity, they can coexist as shown in Fig. 5A, where Heff is shown
for different values of C and %W (by varying $). For a given C,
Heff increases from its equilibrium value at %W ( 0 ($ ( 1) as
the energy dissipation %W increases. However, although both

mechanisms can generate high sensitivity (black lines in Fig. 5B),
their predicted dependence of average FliM occupancy !n" on
CheY-P concentration differs significantly. The CheY-P occu-
pancy curve for the equilibrium model (C ( 0.25, $ ( 1) has a
steep region in the operating range of the CheY-P concentration,
whereas the FliM occupancy for the nonequilibrium model (C (
1, $ ( 256) follows a gradual binding function [Y]

[Y] ) [Y]1/2
for all

CheY-P concentrations, as shown in Fig. 5B (red lines). There-
fore, careful measurement of FliM occupancy is critical to
distinguish between these two mechanisms. The other significant
difference between the two mechanisms is their opposite de-
pendence between the switching frequency and sensitivity. We
find that increasing $ (,1) in the nonequilibrium model not only
increases the sensitivity (Heff), it also increase the switching
frequencies #0,1

'1. On the contrary, for the equilibrium models,
higher sensitivity (with smaller C) leads to slower switching rates
(11) akin to the well known phenomenon of critical slowing down
for equilibrium systems.

Discussion
The general theory on the properties of the dwell-time distri-
bution obtained in this article holds true for all equilibrium
systems with detailed balance. This theory provides a powerful
tool in detecting relevant nonequilibrium effects in all systems
and should be particularly useful in biology, where most inter-
esting systems operate out of equilibrium. The nonequilibrium
characteristics in the dwell-time distribution function, such as
nonmonotonicity (peak), concavity, and other higher-order be-
haviors, generally appear at time scales much smaller than the
average dwell time. Therefore, high-resolution experiments are
required to unravel these subtle but highly informative features.
Depending on the strength of the nonequilibrium effects, extra
care may also be needed to control the signal to prevent
weakening of these features by averaging over different signal
strengths. For example in the case of the E. coli f lagellar motor
switch, peaks in Ps(#) became visible only when Ps(#) were
determined for fixed CW biases (13). There is a recent report of
a similar peak in dwell-time distribution in the kinesin motor for
its waiting-time (between steps) distribution at low ATP con-
centration (21); it would be interesting to study the implication
of these observations in light of our work. The strong connection
between the dwell-time statistic and the underlying kinetics
established here will hopefully stimulate more such careful
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II. The molecular mechanism for accurate adaptation in bacterial chemotaxis
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𝒗𝑹 𝟏 − 𝒂
𝟏 − 𝒂 + 𝒌𝑹

−
𝒗𝑩𝒂
𝒂 + 𝒌𝑩

(YT, T. Shimizu, H. Berg, PNAS 2008)
(YT, Ann. Rev. Biophys. 2012)

[L]

a

m

Input

Output

Memory

slow

fast
excitation

inhibition

𝒂 = 𝑮 𝑳 ,𝒎 =
𝟏

𝟏 + 𝒆$∆𝑬(𝒎, 𝑳 )

∆𝑬 𝒎, 𝑳 ≈ 𝑵[𝜶(𝒎 −𝒎𝟎) − 𝒍𝒏 𝟏 +
𝑳
𝑲

]



The energy-speed-accuracy (cost-performance) tradeoff in sensory adaptation

at Adaptation time

Adaptation error

PerformanceDissipation rate Cost: �̇� −

𝑎(𝑡)
𝜀 =

∆𝑎
𝑎$

∆𝑎 𝑎$

(G. Lan, P. Sartori, S. Neumann, V. Sourjik, YT, Nature Physics, 2012)
Detailed balance is broken in the underlying feedback control mechanism for adaptation

stimulus

Adaptation accuracy

(up to finite size 
correction….)

The energy-speed-accuracy (ESA) relationship

Entropy production rate Adaptation speed

Some calculations ……

̇�̇�
𝑘%𝑇

= 𝑐(𝑎1)×𝜏6$!×ln(𝜀$!)

O(1) constant



Repressilator Brusselator Glycolysis

III. Free energy is used to suppress phase diffusion in biochemical oscillations 

0

c

D WV C
T W W

´ = +
D -

Phase diffusion constant

Free energy dissipated per period

Finite onset energy

Valid for all three generic biochemical circuits for oscillations

V: volume
T: period

C, W0: constants

(∆𝑊 >𝑊%)

(Y. Cao, H. Wang, Q. Ouyang, Y. Tu, Nat. Phys. 2015) 



Cyanobacteria is the simplest organism 
that exhibits circadian rhythm (24 hrs)

IV. Synchronization of circadian clocks: the Kai system in cyanobacteria

Synechococcus elongatus 

KaiC hexamer
S431

T432

(Johnson et al, Ann. Rev. Biophys. 2011)

robust 24-hr oscillation in vivo 

12am

6am
(6Tp)

12pm
(6Tp6Sp)

6pm
(6Sp)

(Nakajima, …, T. Kondo, Science, 2005)

A breakthrough!

KaiA, KaiB, KaiC, +ATP

(Takao Kondō)



A simple model of a single biochemical clock: The Poisson clock model 
Energy is used to suppress backward (reverse) reactions – reversal of time  

(Y. Cao, H. Wang, Q. Ouyang, Y. Tu, Nat. Phys. 2015) 
Only 2 ATP are needed for the P-dP cycle. 

But, ~16 ATP are hydrolyzed per KaiC per day 
(Terauchi et al, PNAS 2007)

What are the other 14 ATP’s used for?

U

T

ST

S

P

PdP

dP

KaiC monomer

P –phosphorylation
dP- dephosphorylation

An Interesting Puzzle: 



One finite-state Poisson clock
Coupled clocks -- exchange interactions

Coupled Molecular Clocks and the Cost of Coupling 



An analytical solution for the many-oscillator phase distribution
(the mean-field limit)

An effective temperature: 𝑇%&& = 𝛽'( = 1 + 𝑘/Ω decreases with exchange frequency  Ω

The phase distribution function of m interacting oscillators 𝑃 𝜙!, 𝜙", … , 𝜙#, 𝑡 satisfies the Fokker-Planck equation:

The processive speed: 𝑣 = 𝑘𝑒$ = −𝑘 lnΓ$/2𝜋 Interaction “energy” 𝐸 𝜑%& 𝑤𝑖𝑡ℎ 𝜑%& = 𝜙% −𝜙&

Exact steady-state solution:



The nonequilibrium phase transition and energy cost of synchronization

Ω
Ω+ 𝑘𝐸' = 2Critical line:

𝑟 > 0 when Ω
Ω+ 𝑘𝐸' > 2;

𝑟 = 0 when 
Ω

Ω+ 𝑘𝐸' ≤ 2

Synchronization order parameter 𝑟 ∈ [0,1]

𝜓 = 𝑣𝑡

3 4 5 6
E0

-0.5

0

0.5

lg
/k

𝑊() 𝐸', Ω

𝑊' = 2𝜋𝑒$ = −lnΓ$

𝑊 = �̇�×𝑇 = 𝑊' +𝑊()

Energy dissipation rate 

procession
energy

(single clock)

coupling
energy

𝑟(𝐸-, Ω)



The optimal design for maximal synchronization with a fixed energy budget

𝑊*,#%, = 8𝜋/𝑒$

(𝑊'= 2𝜋𝑒$)

𝑟./0 𝑊 = max(𝑟 𝐸-, Ω 𝑊 )

𝑟 ≈ (
3𝑒$
2𝜋 )

!
-×(𝑊 −𝑊' −𝑊*,#%,)

!
-

𝑟 ≈ 1 −
𝜋

𝑒$(𝑊 −𝑊')

(𝐸-∗, Ω∗) = argmax
2,3!

𝑟 𝐸-, Ω 𝑊



How do individual KaiC hexamers synchronize with each other?

KaiC hexamers exchange monomers

(Kageyama et al, …, T. Kondo, Mol. Cell, 2006)

E. Emberly & N. Wingreen, PRL 2006
T. Mori et al, PLoS Biol. 2007

….

Monomer shuffling can lead to 
synchronization



A model of synchronization based on monomer-shuffling in the Kai system

The Puzzle: Only 2 ATP are needed for the P-dP cycle , 16 ATP are hydrolyzed per KaiC per day 
(Terauchi et al, PNAS 2007)

Varying 
R– exchange (shuffling) rate
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hexamer -- PdP cycle

(2) Exchange coupling between
two KaiC hexamers
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Our model

(DL Zhang et. al. Nature Physics, 2020)



The inverse scaling of the dissipation rate 
The efficiency puzzle

-- PJ Foster*, J Bae*, B Lemma, J Zheng, Z Dogic, DJ Needleman, JJ Vlassak, “Dissipation and 
energy propagation across scales in an active cytoskeletal material”, in preparation

Active Gel: Kinesin –Microtubule mixture



Coarse graining of a reaction network in state space

Coarse-graining of the states

Coarse-graining of the rates



The inverse scaling of the dissipation rate

Entropy production rate

(𝐴4,5= 𝐽4,5 − 𝐽5,4)

𝑛' −𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑖𝑐𝑟𝑜𝑠𝑐𝑜𝑝𝑖𝑐 𝑠𝑦𝑠𝑡𝑒𝑚
𝑛* −𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠 𝑐𝑜𝑎𝑟𝑠𝑒 − 𝑔𝑟𝑎𝑖𝑛𝑒𝑑 𝑠 𝑡𝑖𝑚𝑒𝑠
𝐿 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑙𝑖𝑛𝑘𝑠) in the network

The random flux model (𝑘4,5 = 𝑖. 𝑖. 𝑑. 𝑃(𝑘))



The inverse scaling law (ISL) requires self-similarity of the reaction networks
ISL exists 

in scale-free networks

No ISL in networks w/o self-similarity

Erdós-Rényi
networks 

Small-World 
networks



The dissipation scaling exists in realistic biochemical networks

(1) The reversible Brusselator model for biochemical oscillations 

Coarse-graining (CG) procedure Inverse dissipation scaling



The dissipation scaling exists in realistic biochemical networks

(2) A simple model for kinesin–microtubule active flow system

kinesin persistent run length 𝑙'~0.6 − 1𝜇𝑚
active flow scale 𝑙.~100𝜇𝑚

̇�̇�6
�̇�-

≈
𝑙-
𝑙6

78"#
≈ 10$9.; − 10$<.= (𝜆/0 ≈ 1.23)

Inverse dissipation scalingCoarse-graining (CG) procedure

~10-8



An interesting comparison

Non-equilibrium reaction networks Homogeneous fully-developed turbulent 

(Qiwei Yu, DL Zhang, YT, PRL, 126 (8), 2021)



Understanding biochemical circuits: a nonequilibrium physics perspective

• Biological functions are maintained by continuous energy consumption. 

Living systems are in non-equilibrium steady state (NESS).
The “resting energy” enhances their active functions, e.g., speed, accuracy, etc..

• Energy costs limit the optimal performance (e.g., Accuracy, Speed).

Adaptation, error correction, time control, spatial and length control, self-assembly, 
synchronization, memory & learning, etc…

• Design principles for efficient biochemical networks. 

• Dissipation occurs in all scales – smaller scale has higher dissipation rate. Inverse scaling law 
exists in some self-similar extended networks. More needs to be done …

𝑘1Tln(𝜖2!) ≅ 𝑐'�̇�×𝜏3

Type I accuracy: mean value Type II accuracy: fluctuation

𝐷4 = 𝐶 +
𝑊'

∆𝑊−𝑊5



Thank You!


