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Active nematics
• Active turbulence
• Self propelled topological defects

Topological defects in biological shape changes
• from 2D to 3D
• the morphologies of active droplets

Active topological defects in channels
• from laminar flow to active turbulence



Active matter: 
takes energy from the environment on a single particle level and uses it to do work. 

cellsmolecular motors
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Fig. 1. Low Reynolds number swimmers: (a) a sperm cell [13], the wave moving along the
flagellum defines a direction in time and allows motion at zero Reynolds number; (b) E. coli,
an example of a pusher, the far flow circulates outwards from the head and tail and inwards
to the sides; (c) Chlamydomonas, the ‘breast-stroke’ of the flagella leads to a contractile
(puller) far flow which circulates from the sides to the front and rear; (d) Euglena metaboly,
shape changes of the body result in propulsion; (e) Paramecium, the surface is covered by
beating cilia, these synchronise, and metachronal waves in the beating pattern move across
the surface of the organism; (f) a fabricated microswimmer, driven by a rotating magnetic
field [11].

bacteria and algae, and fabricated microswimmers, swim. For such tiny entities the
governing equations are the Stokes equations, the zero Reynolds number limit of the
Navier-Stokes equations. This implies the well-known Scallop Theorem, that swim-
ming strokes must be non-invariant under time reversal to allow a net motion, ideas
introduced in Sec. 2. Then, in Sec. 3, we define two model microswimmers and show
how to calculate their swimming speeds.

A concept that we stress in this review is that biological swimmers move au-
tonomously, free from any net external force or torque. As a result the leading order
term in the multipole (far field) expansion of the Stokes equations vanishes and mi-
croswimmers generically have dipolar far flow fields. Sec. 4 is a discussion of the
multipole expansion, and its application to microswimming, and we introduce the
stresslet and rotlet. Then, in Sec 5, we describe physical examples where the dipolar
nature of the bacterial flow field has significant consequences, velocity statistics in a
dilute bacterial suspension and tracer di↵usion in a swimmer suspension. A discussion
of open questions in Sec. 6 closes the paper. As this is a tutorial review we have aimed
to cite references which can be used as entries to the literature.
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II. METHODOLOGY
A. Immersed Boundary-Lattice Boltzmann Method.

The swimmer and cilia reside in a fluid domain. The fluid flow
is computed using the lattice Boltzmann method,7 which is an
efficient numerical solver for the Navier−Stokes equations. The
size of the fluid domain is Lx × Ly × Lz = 60 × 40 × 60 in lattice
Boltzmann units, with periodic boundary conditions in the x
and z directions and no-slip conditions applied on the
boundaries y = 0 and y = Ly. To match the scales of recently
fabricated synthetic cilia and well-studied swimming micro-
organisms, such as the alga Chlamydomonas reinhardtii, we set
the lattice Boltzmann grid spacing Δx = 2.5 μm and the time
step Δt = 1 μs. This yields a cilium length and swimmer length
of 25 μm and biologically relevant swimmer speeds on the
order of 102−103 μm/s (see below).
In our simulation, the upper and lower walls lie 100 μm

apart. We will focus on swimmer dynamics near the lower wall,
where the cilia are located. Although the wall separation is only
4 times the swimmer length, we anticipate that our conclusions
also apply in the case that the upper wall is further away or even
absent. Notably, bacterial cell scattering experiments have
suggested that a wall has negligible hydrodynamic effect until
the swimmer collides with it, aligning with the wall and
remaining in close proximity.14 Once our model swimmer
reaches the ciliated lower wall, the upper boundary is
sufficiently far away to be inconsequential.
The flow field generated by the cilia also potentially depends

on the wall separation. Performing simulations with the wall
separation doubled, however, we found that the flow profile
within the ciliary layer was qualitatively identical. The main
difference was a reduced shear rate in the fluid above the cilia
(see Figure S1). Since for our analysis we are primarily
interested in the dynamics of swimmers that reach the ciliary
layer, the location of the upper wall is not critical, provided that
it is at least a few body lengths away from the lower wall.
The LB method is coupled to the dynamics of solid objects

using the immersed boundary method as follows.10 An object in
the fluid is defined by a collection of mesh nodes. At each time
step, internal forces and torques acting on each node are
computed using a constitutive model relating the stresses to
strains within the object. These forces and torques are
transferred to the fluid in accordance with local force and
torque balance. The resulting flow field is then used to advect
the object nodes, thereby satisfying a no-slip condition on the
object. An additional feature not present in traditional IBMs is
that nodes have an associated orientation, which is updated
using the fluid vorticity field.15 This is required for the elastic
filament model of the cilia (see Supporting Information text).
Although this method of advecting immersed boundaries

helps to prevent interpenetration of bodies,15 we reinforce
excluded volume effects around objects by imposing a short-
ranged repulsive force between nodes of swimmers and those of
cilia. The form of this force corresponds to the repulsive part of
a Morse potential interaction

= − − −V r D( ) (1 e )a r rMorse ( ) 20 (1)

where the maximal interaction range is r0 = 1.5Δx. The precise
details of the repulsive interaction are not expected to
qualitatively influence the outcomes of the model.
B. Swimmer Model. The swimmer that we simulate herein

is based on a theoretical model proposed by Najafi and
Golestanian.16 The body consists of three linked spherical

beads arranged along a line. The lengths of the links between
neighboring beads oscillate as illustrated in Figure 1A. The

stroke is nonreciprocal, which is a well-known prerequisite for
generating a net displacement from a cyclic sequence of body
deformations in the zero-Reynolds-number limit.17 This model
swimmer was chosen because it is one of the simplest that
captures the fundamental characteristic of self-propulsion in a
viscous fluid and is, as for many biological swimmers, attracted
to a surface in the absence of the cilia. (However, the approach
described here is sufficiently general that we can introduce
other types of swimmers, such as a flagellated organism;18 this
will be the subject of future work.)
In our three-dimensional numerical model, each bead of the

swimmer is advected with the local flow velocity. Linear elastic
forces and torques are employed to maintain a swimmer
configuration that is close to rigid and collinear. Using one
immersed boundary node for each bead gives an effective
hydrodynamic radius R = Δx. We choose the link lengths to
oscillate between Lmin

link = 4Δx and Lmax
link = 6Δx so that the

average total swimmer length is Lswim = 10Δx = 25 μm. We
investigate swimmers with two different stroke periods, Tswim =
200Δt and 1000Δt. In both cases, we determined the net
displacement after one cycle to be about 1% of the swimmer
length. This is consistent with the analytical result for the
displacement, Δ, given by Earl et al.:19

ε εΔ = + ≈R L L L7
12

[( / ) ( / ) ] 0.009max
link 2

max
link 3 swim

where ε = (Lmax
link − Lmin

link).
Converting to physical units, the average speeds of the fast

and slow swimmers are vswim = 1250 and 250 μm/s,
respectively. By comparison, experiments have found swimming
speeds up to 240 μm/s for the 10 μm long C. reinhardtii,20

while bacteria and certain fish larvae are known to reach relative
speeds of 50 body lengths per second.21 Our simulated
swimmers are therefore representative of biological examples in
terms of speed. For a fluid with the viscosity of water, the
corresponding Reynolds numbers are Refast = 0.03 and Reslow =
0.006, indicating the dominance of viscous over inertial effects.

C. Cilium Model. Each cilium is modeled as an elastic rod
of length Lcil = 10Δx = 25 μm, discretized into N = 10
segments of equal lengths. The rod segments are characterized
by position and orientation vectors. Internal mechanics of the
rod are governed by linear elastic constitutive relations

Figure 1. Simulation setup and details of the individual components.
(A) A schematic of the swimming stroke cycle for the three-linked-
sphere swimmer. The darker sphere indicates the leading end of the
swimmer. One full cycle leads to a net displacement of about 1% of the
body length. (B) The simulation domain containing nine cilia and one
swimmer. (C) A superposition of configurations of a single cilium
showing the periodic stroke induced by the external driving force. This
stroke is animated in Movie S1.
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Active turbulence: bacteria

Dense suspension of microswimmers
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First we describe the equations of motion, those corresponding to an active nematic, that

we use to model the active suspension. These are the standard equations of liquid crystal

hydrodynamics, written in terms of a tensor order parameter Q, together with an active

term which means that any gradient in Q will produce a flow field. Evolution of Q along

with the momentum ρu is given by [25, 26],

(∂t + uk∂k)Qij − Sij = ΓHij, (4)

ρ(∂t + uk∂k)ui = ∂jΠij. (5)

Here the generalised advection term

Sij =(λEik + Ωik)(Qkj + δkj/3) + (Qik + δik/3)(λEkj − Ωkj)

− 2λ(Qij + δij/3)(Qkl∂kul)

Here, the strain rate tensor, Eij = (∂iuj + ∂jui)/2

and the vorticity tensor, Ωij = (∂jui − ∂iuj)/2

describe where λ is the alignment parameter. We choose λ = 0.7 corresponding to tumbling

rods [8]. Rotational diffusivity is denoted by Γ and the molecular field

Hij = −
δF
δQij

+
δij
3
Tr

δF
δQkl

(6)

isermined from the free energy,

F =
K

2
(∂kQij)

2 +
A

2
QijQji +

B

3
QijQjkQki +

C

4
(QijQji)

2 (7)

. Here K is the elastic constant, A,B and C are material constants. The total stress

generating the hydrodynamics has 3 parts;

1. the viscous stress, Πviscous
ij = 2µEij

2

m =
1

2π

∫

dS

dθ (1)

m = +
1

2
(2)

m = −
1

2
(3)

First we describe the equations of motion, those corresponding to an active nematic, that

we use to model the active suspension. These are the standard equations of liquid crystal

hydrodynamics, written in terms of a tensor order parameter Q, together with an active

term which means that any gradient in Q will produce a flow field. Evolution of Q along

with the momentum ρu is given by [25, 26],

(∂t + uk∂k)Qij − Sij = ΓHij, (4)

ρ(∂t + uk∂k)ui = ∂jΠij. (5)

Here the generalised advection term

Sij =(λEik + Ωik)(Qkj + δkj/3) + (Qik + δik/3)(λEkj − Ωkj)

− 2λ(Qij + δij/3)(Qkl∂kul)

Here, the strain rate tensor, Eij = (∂iuj + ∂jui)/2

and the vorticity tensor, Ωij = (∂jui − ∂iuj)/2

describe where λ is the alignment parameter. We choose λ = 0.7 corresponding to tumbling

rods [8]. Rotational diffusivity is denoted by Γ and the molecular field

Hij = −
δF
δQij

+
δij
3
Tr

δF
δQkl

(6)

isermined from the free energy,

F =
K

2
(∂kQij)

2 +
A

2
QijQji +

B

3
QijQjkQki +

C

4
(QijQji)

2 (7)

. Here K is the elastic constant, A,B and C are material constants. The total stress

generating the hydrodynamics has 3 parts;

1. the viscous stress, Πviscous
ij = 2µEij



Continuum equations of liquid crystal hydrodynamics



Continuum equations of liquid crystal hydrodynamics

Tumbling parameter



Continuum equations of liquid crystal hydrodynamics

viscous + passive

couples nematic order and shear flows

relaxation to minimum of Landau-de Gennes free energy



E-coli

Goldstein group, Cambridge

extensile

contractile



Continuum equations of liquid crystal hydrodynamics

viscous + passive

couples nematic order and shear flows

relaxation to minimum of Landau-de Gennes free energy



Continuum equations of active liquid crystal hydrodynamics

viscous + passive + active stress

couples nematic order and shear flows

relaxation to minimum of Landau-de Gennes free energy



Gradients in the magnitude or direction of the 
order parameter induce flow.

Active stress => active turbulence 

Hatwalne, Ramaswamy, 
Rao, Simha, PRL 2004



Instability 1: nematic ordering is unstable to bend instabilities
(extensile)

splay instabilities
(contractile)



Active turbulence 

Flow field and vorticity field from solving 
the continuum equations
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No real reason for thermodynamic ordering in many active systems 



Instability 2: isotropic state is unstable to nematic order

Title

(a) ✓ = 0

(b) ✓ =
⇡
2

(c) ✓ =
⇡
4

Fig. 4: Physical mechanism for the growth of nematic or-
der in an isotropic system of active particles. Blue solid
lines indicate nematic directors and red arrows denote the
activity-induced flows. In (c) the disordered region at the
centre is aligned by the shear flow set up by the neigh-
bouring ordered regions.

Boltzmann units).

In order to emulate the initial perturbation, simulations
are started with a well defined initial condition, prescrib-
ing the perturbation in the magnitude of the nematic or-
der parameter through a sine function S = S0+B sinq · r
and taking the system to be at rest, u = 0 at time t = 0.
The corresponding, spatially uniform, director field n was
prescribed to lie at an angle ✓ = ⇡/4 with q. The re-
sult obtained from the simulation is presented in Fig. 5a
in the form of a kymograph where the horizontal axis is
the wavenumber (q-space), the vertical axis is time and
the color field indicates the Fourier amplitude of the or-
der parameter, Ŝ. Thus, Fig. 5a represents the spatio-
temporal evolution of the initial sine wave perturbation
in the magnitude of the nematic order. The simulation
results confirm the predictions of linear stability analysis,
showing that the imposed perturbation grows at the ex-
cited wavenumber (|q| = 0.12). Moreover, simulations
show that, at later times, larger wavelengths (smaller
wavenumbers |q| < 0.12) are excited, an aspect beyond

(a)

(b)

Fig. 5: Kymographs of the evolution of the Fourier ampli-
tude of the magnitude of the nematic order, Ŝ, shown by
the colormap, as a function of the wavenumber |q| (on the
horizontal axis) and time t (on the vertical axis) for (a)
the sinusoidal initial condition S = S0 + B sinq · r with
S0 = 10�6, B = 10�7, q = 0.12, ✓ = ⇡

4 and u = 0, (b)
for a randomly initialised Q; with S(x, z) taking random
values from (0, 10�7) and n constant along the x-axis. In
(a) the Fourier transform is performed along the pertur-
bation wavevector q and in (b) the Fourier transform is
performed along an arbitrarily chosen axis.

the scope of linear stability analysis. However, the spread
towards smaller |q| is consistent with the long wavelength
instability predicted by the dispersion relation.

In order to quantitatively compare the simulation re-
sults with the results from linear stability analysis, we
quantified the growth rate of the order parameter. The
spatially averaged value of

⌦
(S(x, z)� S0)2

↵
was calcu-

lated as a function of time and fitted to an exponential
function e

2!st to extract the growth rate !s. The growth
rates obtained as a function of q are shown in Fig. 2 and
match well with the analytical results.

Finally we carried out a similar analysis by performing
numerical simulations on a system perturbed with a ran-

p-5

Even if the passive system is isotropic, can still get active turbulence
(for extensile rod-like particles or contractile disc-shaped particles)

Santhosh et al J Stat Phys 2020



Active turbulence: topological defects are created and destroyed
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From 2D to 3D
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Figure 4. Topological defects organize 3D growth and differentiation. (A) Confocal 253 

sections of an actin-labelled cell mound. (B) Average section of the 3D orientational 254 

field. (C, D) Histograms of the angles 𝜑 and 𝜙, respectively, for different heights. (E) 255 

Confocal sections showing the preferential position for myosin heavy chain (MyHC) 256 

expression (r=100μm). Left panel corresponds to the first layer of cells. Center panel 257 

corresponds to the midplane, displaying a multinucleated myotube-like structure. Right 258 

panel shows the maximum projection of MyHC intensity (N=43). (F) Radial profiles 259 

of averaged MyHC intensity under different conditions. (G) Z-projection of a nuclei-260 

labelled cellular protrusion (r=100μm. Inset, phase contrast). (H) Average flow field 261 
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From 2D to 3D
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FIG. 1: Snapshots from simulations of 2D active nematics layers. Color denotes the magnitude of the
in-plane order (Sin = [1 ≠ n2

z]1/2) from in-plane (black) to out-of-plane (white): (a) extensile stress, *defects
in cyan. 3D twist-type defects are represented by circles, +1/2 and ≠1/2 in-plane wedge-type defects are
shown by one and three arrows, respectively. (b) contractile stress, 2D ±1/2 topological defects are shown
in white. (c) Area fraction of regions with out of plane director as a function of activity. d) *In-plane uin

and out-of-plane uz velocities for contractile (yellow, uz = 0) and extensile (pink, orange) driving.

dicular to the layer, leading to the usual 2D active
dynamics (Fig. 1(b)). In extensile systems, how-
ever, the director has non-zero out-of-plane com-
ponents except within dynamic, elongated domains
(Fig. 1(a) and Movie 1). This behaviour is quan-
tified in Fig. 1(c) where we plot the area fraction
of the out-of-plane regions as a function of activity,
showing that this quantity remains zero for the con-
tractile case, but increases with activity in extensile
systems. Histograms of the corresponding in-plane
and out-of-plane flow fields are shown in Fig. 1(d).
In contractile systems flows remain in the x-y plane
whereas in the extensile case the flow develops sub-
stantial components along z which act to drive the
director into the third dimension.

We will discuss the dynamics of the in-plane do-
mains in the extensile case below, but first we per-
form a linear stability analysis of the nematohydro-

dynamic equations around the fully-aligned in-plane
nematic phase to further understand the di�erent
behaviour of extensile and contractile systems. Rep-
resenting the Fourier transform of any fluctuating
field ”f as ”f(r, t) =

s
dq f̃(q, Ê) eiq·r+Êt, in the

long-wave-length and zero Reynolds number limit
the growth rate of a perturbation reads:

Êout = 3’

4÷
cos2 ◊≠K

“
q2, Êin = 3’

4÷
cos 2◊≠K

“
q2, (1)

where Êout and Êin are the growth rates of the out-
of-plane and in-plane components of the director,
◊ is the angle between the wavevector of the per-
turbation and the direction of the order and ÷ is
the viscosity. Details of the calculations and the full
form of the growth rates (including the flow-aligning
dependence) can be found in the SM.

The onset of instability is given by the condi-
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(a) Surface alignment, extensile activity (b) Surface projection, extensile activity

(c) Surface alignment, contractile activity (d) Surface projection, contractile activity

FIG. 3: Surface alignment of the director field for extensile and contractile activity. Point
defects are shown as blue dots and are connected via disclination lines through the bulk.

plane over most of the surface, but there are localised regions with perpendicular alignment
(see Fig 3 a,b). The disclination lines present in the bulk of the droplet create quasi two-
dimensional defects at the positions where they terminate at the interface. The distribution
of twist angle � of surface defects has distinct peaks at � = 0 and � = ⇡, showing that most
defects on the surface are of wedge type (Fig 5). There are less twist-type surface defects
with � ⇡ ⇡/2 as these introduce a perpendicular aligned region in the vicinity of the defect,
which is suppressed by active anchoring.

A two-dimensional nematic sheet confined to the surface of a sphere always has at least
four +1/2 defects present as the total topological charge is conserved and must add up to
two, the Euler-characteristic � of a sphere. Active anchoring does not confine the director
field to the surface everywhere so the topological charge is not strictly conserved. The
topology of droplet does not significantly a↵ect the distribution of twist angle � at the
surface, which is confirmed by comparing distributions of beta obtained from spherical
droplets (� = 2) and nematic cylinders (� = 0, see Fig 17).

By contrast, contractile activity leads to a remarkable stripe pattern in the director
alignment on the surface. While most parts of the surface show strong perpendicular
(homeotropic) active alignment, this is interspersed with many thin stripes of clear in-
plane ordering (see Fig 3 c,d). The stripes start and terminate at surface defects which
are mostly twist-type with � ⇡ ⇡/2 (Fig 5). Wedge-type disclinations with � = 0,⇡ are
suppressed as they would create a region of in-plane alignment in the vicinity of the defect.
Twist-type disclinations on the other hand only introduce a small region of in-plane align-
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#v irQ +QMi`QH T�`�K2i2`b, h?2 �+iBpBiv MmK#2` A =
R
√
ζ/KLC +QMi`QHb i?2 /2MbBiv Q7 /Bb+HBM�iBQM HBM2b BM@

bB/2 i?2 #mHF Q7 /`QTH2ib r?BH2 i?2 `�iBQ Q7 2H�biB+ +QM@
bi�Mi iQ bm`7�+2 i2MbBQM Ψ = KLC/Kϕ [m�MiB}2b i?2 2M@
2`;2iB+ +Qbi �bbQ+B�i2/ rBi? M2K�iB+ /27Q`K�iBQMb BM i?2
#mHF +QKT�`2/ iQ /27Q`K�iBQMb Q7 i?2 BMi2`7�+2 U�bbmK@
BM; bm`7�+2 i2MbBQM /QKBM�i2b i?2 #2M/BM; biBzM2bbVX h?2
KQ`T?QHQ;v Q7 /`QTH2ib �b � 7mM+iBQM Q7 A �M/ Ψ Bb b?QrM
BM 6B;X RRX 6Q` p2`v biBz BMi2`7�+2b UΨ ≪ 1V- /`QTH2ib �`2
M2�`Hv bT?2`B+�H �M/ ?Qbi /Bb+HBM�iBQM HBM2b B7 i?2 �+iBpBiv
A Bb bm{+B2MiHv H�`;2 U#Hm2 /B�KQM/b- Tm`TH2 i`B�M;H2bVX
aQ7i BMi2`7�+2b UΨ ≥ 1V ?Qr2p2` �HHQr i?2 7Q`K�iBQM Q7
}M;2`@HBF2 T`Qi`mbBQMb �b bQQM �b /Bb+HBM�iBQM HBM2b �`2
7Q`K2/ BMbB/2 /`QTH2ib Uv2HHQr +B`+H2bVX A7 �+iBp2 7Q`+2b
#2+QK2 Km+? H�`;2` i?�M i?2 T�bbBp2 `2biQ`BM; 7Q`+2 Q7
i?2 BMi2`7�+2- �+iBp2 ~Qrb i2�` �T�`i i?2 /`QTH2i r?B+?
#`2�Fb mT BMiQ bK�HH2` T�`ib UQ`�M;2 b[m�`2b- b22 �HbQ
JQpB2 a8 (kN)VX h?2 bi`2M;i? Q7 T`Qi`mbBQM 7Q`K�iBQM
+�M #2 [m�MiB}2/ #v i?2 ;v`B}+�iBQM BM/2t- r?B+? Bb �
7mM+iBQM Q7 A �M/ Ψ U6B;X a3U�V (kN)VX

6A:X NX 6Q`K�iBQM Q7 }M;2`@HBF2 T`Qi`mbBQMb #v KQiBH2 /Bb+HB@
M�iBQM HBM2b b?QrM #v i?`22 bM�Tb?Qib �i iBK2b t1 < t2 < t3X
S�M2Hb U�V@U+V b?Qr i?2 i?`22@/BK2MbBQM�H /`QTH2i b?�T2 rBi?
+QHQm` +Q/BM; b?QrBM; i?2 HQ+�H bm`7�+2 �HB;MK2Mi Q7 i?2 /B@
`2+iQ` }2H/X .Bb+HBM�iBQM HBM2 b2;K2Mib �`2 +QHQm`2/ �++Q`/BM;
iQ i?2 irBbi �M;H2 β rBi? i?2 b�K2 +QHQm` +Q/BM; �b BM 6B;X eX
U�V .Bb+HBM�iBQM HBM2 rBi? p�`vBM; irBbi �M;H2 β KQp2b iQr�`/b
i?2 BMi2`7�+2X �+iBp2 ~Qr Tmb?2b i?2 BMi2`7�+2 Qmir�`/b +`2@
�iBM; � #mH;2 �HQM; i?2 b2H7@T`QTmHbBQM /B`2+iBQM Q7 i?2 /Bb+HB@
M�iBQM HBM2X U#V h?2 bK�HH T`Qi`mbBQM rB/i? +QK#BM2/ rBi?
BM@TH�M2 �HB;MK2Mi �i i?2 bm`7�+2 bi�#BHBb2b i?2 /Bb+HBM�iBQM
HBM2 BMiQ �M �HKQbi bi`�B;?i +QM};m`�iBQM rBi? β ≈ πX U+V
.Bb+HBM�iBQM HBM2 KQp2b Qmi Q7 i?2 /`QTH2i H2�pBM; #2?BM/ �
/272+i@7`22 T`Qi`mbBQM rBi? �M �HB;M2/ /B`2+iQ` }2H/X .Bb+HBM�@
iBQM HBM2b 2tBi T`Qi`mbBQMb �b M2�`Hv bi`�B;?i HBM2b �M/ /Q MQi
+QHH�Tb2 iQ � bm`7�+2 TQBMi@/272+i �b �+iBp2 �M+?Q`BM; Bb MQi
bi`QM; 2MQm;? iQ 7Q`+2 i?2 +`2�iBQM Q7 � bm`7�+2 TQBMi@/272+iX
S�M2Hb U/V-U2V b?Qr � b+?2K�iB+ /B�;`�K Q7 i?2 /B`2+iQ` }2H/
�M/ �+iBp2 7Q`+2bX h?2 `2/ �``Qr BM T�M2H U/V /2MQi2b i?2 b2H7@
T`QTmHbBQM /B`2+iBQM Q7 i?2 β ≈ π /Bb+HBM�iBQM HBM2bX �b b?QrM
BM T�M2H U+V- /Bb+HBM�iBQMb H2�p2 #2?BM/ �M �`2� Q7 T2`T2M/B+@
mH�` bm`7�+2 �HB;MK2Mi U/�`F `2;BQMbV �i i?2 2M/ Q7 T`Qi`m@
bBQMb r?B+? bHQrHv `2i`�+i /m2 iQ bm`7�+2 i2MbBQM �M/ #2M/BM;
`B;B/BivX aM�Tb?Qib +`2�i2/ 7`QK bBKmH�iBQM rBi? /`QTH2i bBx2
R = 15 �i iBK2b t1 = 71500 t2 = 72500 t3 = 73500- b22 �HbQ
JQpB2 ak (kN)X

1. Extensile: protrusions form where disclination lines meet the surface

disclination lines tend to line up
across protrusions
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FIG. 4: Adjacent twist-type disclinations (green) align anti-parallel to each other in order
to minimise the region of in-plane alignment between them (orange rods).

FIG. 5: Distribution of twist angle �surf at the surface obtained from a time-averaging of
surface defect in the active turbulent regime.

ment along one specific direction (Fig 2) and are therefore favoured. Adjacent twist-type
disclinations tend to align in a way that minimises the are area of unfavourable in-plane
alignment, thereby creating the observed stripe pattern (Fig 4).

Perfect perpendicular alignment at the surface would prevent disclination lines in the
bulk terminating at the surface as all diclination lines introduce some area of in-plane
alignment at the surface. Because topological charge is conserved, a sphere with perfect
homeotropic alignment at the interface would force the system to form a +1 defect loop in
the bulk (Binysh et al., 2020; Čopar et al., 2019). However, +1 defect loops in the bulk are
associated with large elastic energy of the liquid crystal which usually cannot be overcome
by active anchoring.

B. Disclination line dynamics depend on the type of activity and varies spatially

We will now focus on disclination line dynamics in active turbulence inside spherical
droplets which are essentially undeformed by active forces. In the regime of active turbu-
lence, disclination lines are constantly created and annihilate. Previous investigations of
active turbulence in bulk systems found that the dominant excitation of three-dimensional

2. Contractile: lines of in-plane alignment at surface
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FIG. 14: Snapshot of a contractile drop showing from left to right the local radius, the
mean curvature and the orientation of the director field on the surface. Contractile

droplets which contain disclination lines show stripes of in-plane director alignment on the
surface connecting the endpoints of disclination lines in the bulk (Fig 3). Bend and splay
deformations of the director field in the bulk create comb-shaped deformations along

stripes of in-plane alignment, resulting in a wrinkle pattern.

in-plane alignment, resulting in a surface wrinkle pattern we term active wrinkling (Fig
14). Droplet deformation causes the perpendicularly aligned surface areas between in-plane
stripes to form splay deformations in the bulk, which cause inward pushing, active forces
that create holes. Along the in-plane ridges the mean curvature is negative while in the
centre of holes it is positive. Surface alignment cos(✓) is therefore correlated to the local
mean curvature of the interface where in-plane surface alignment (cos(✓) ⇡ 0) is associated
with points of negative mean curvature while perpendicular surface alignment (cos(✓) ⇡ 1)
is strongest at points of positive mean curvature (Fig 24).

As for the extensile case, the morphology of contractile droplets is determined by activity
number A = R

p
⇣/KLC and elasticity ratio  = KLC/K' (Fig 15). Very sti↵ interfaces

( ⌧ 1) cause droplets to be nearly spherical and host disclination lines if activity A
is su�ciently large (blue diamonds, purple triangles). If interfaces are su�ciently soft
( ⇡ 1), droplets can be either be static, oblate ellipsoids without disclination lines (blue
diamonds), perform an active random walk (yellow circles) or form surface wrinkles (green
stars). For very soft interfaces ( � 1), droplets are static ellipsoids at low activity and
full droplet invagination takes place at larger activity, leading teh droplet to eventually
break-up (orange squares). The degree of invagination and wrinkling is also quantified by
the gyrification index, which varies as a function of A and  (Fig 25 b).

Contractile: surface wrinkles



Contractile: surface wrinkles



3. Contractile (small droplets):invagination
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3D active droplet: behaviour depends on active anchoring

Extensile: protrusions at +1/2 surface defects

Contractile: lines of in-plane anchoring joining 
surface twist defects => wrinked drops

surface bend ring => invagination, random walk

3

;`QrBM; T`Qi`mbBQM �M/ KQp2b Qmi Q7 i?2 M2K�iB+ /`QTH2i-
H2�pBM; #2?BM/ � ?QKQ;2M2Qmb /B`2+iQ` }2H/ r?B+? Bb
�HB;M2/ �HQM; i?2 T`Qi`mbBQM �tBb U6B;X NU+-2VVX h?2`2#v
�M �`2� Q7 T2`T2M/B+mH�` bm`7�+2 �HB;MK2Mi Bb BMi`Q/m+2/
�i i?2 2M/ Q7 T`Qi`mbBQMb- r?B+? �`2 TQBMib Q7 H�`;2 M2;@
�iBp2 K2�M +m`p�im`2X h?2 bm`7�+2 �HB;MK2Mi cos(θ) Bb
i?2`27Q`2 +Q``2H�i2/ iQ i?2 HQ+�H K2�M +m`p�im`2 Q7 i?2 BM@
i2`7�+2 U6B;X a9 (kN)VX AM i?2 �#b2M+2 Q7 /Bb+HBM�iBQM HBM2b
K2/B�iBM; �+iBp2 7Q`+2b- i?2 �HB;M2/ T`Qi`mbBQMb bHQrHv
`2i`�+i /m2 iQ bm`7�+2 i2MbBQM �M/ #2M/BM; 2M2`;vX h?2
+QMbi�Mi 7Q`K�iBQM �M/ `2i`�+iBQM Q7 /`QTH2i T`Qi`mbBQMb
Bb �HbQ b?QrM BM JQpB2 ak (kN)X

hQ 7m`i?2` [m�MiB7v i?2 K2+?�MBbK Q7 T`Qi`mbBQM 7Q`@
K�iBQM r2 K2�bm`2/ b2p2`�H T`QT2`iB2b Q7 /Bb+HBM�iBQM
HBM2b �b � 7mM+iBQM Q7 `�/B�H TQbBiBQM xr -rBi? i?2 /`QTH2iǶb
+2Mi`2 Q7 K�bb #2BM; i?2 `272`2M+2 TQBMi Q7 � bT?2`B+�H
+QQ`/BM�i2 bvbi2KX 6Q` �TT`QtBK�i2Hv 2HHBTbQB/�H /`QTH2i
b?�T2b- xr +�M #2 mb2/ �b � T`Qtv iQ /BpB/2 i?2 BMBiB�HHv
bT?2`B+�H /`QTH2i Q7 `�/Bmb R BMiQ � #mHF /QK�BM Uxr < RV
�M/ � T`Qi`mbBQM /QK�BM Uxr > RVX .Bb+HBM�iBQM HBM2b BM
i?2 #mHF Uxr < RV Q7 bQ7i /`QTH2ib mM/2`;Q +?�QiB+ KQp2@
K2Mi U⟨vr⟩ ≈ 0V �M/ �`2 KQbiHv irBbi ivT2X "v +QMi`�bi-
BM T`Qi`mbBQMb Uxr > RV /Bb+HBM�iBQM HBM2b KQbiHv +QMbBbi
Q7 +1/2 HBM2 b2;K2Mib U≈ 70%V �M/ b?Qr T2`bBbi2Mi b2H7@
T`QTmHbBQM �HQM; i?2 `�/B�H T`Qi`mbBQM �tBb U⟨vr⟩ ≫ 0- b22
6B;X RyU�VVX .Bb+HBM�iBQM HBM2b BM T`Qi`mbBQMb �`2 M2�`Hv
bi`�B;?i �M/ i?2B` iQi�H H2M;i? L Bb HBKBi2/ #v i?2 rB/i? Q7
i?2 T`Qi`mbBQM UL(xr) ≈ +QMbi 7Q` xr > R- b22 6B;X RyU#VVX

.`QTH2ib Q7 bBx2b Km+? H�`;2` i?�M i?2 �+iBp2 H2M;i?@
b+�H2 R ≫ ℓζ �`2 bi`QM;Hv /27Q`K2/ �M/ T`Qi`mbBQMb /Q
MQi �Hr�vb ;`Qr �HQM; i?2 `�/B�H �tBb U6B;X a8U�V (kN)V-
i?2`2#v `2M/2`BM; i?2 bT?2`B+�H �TT`QtBK�iBQM mMbmBi@
�#H2X aiBHH Bi +�M #2 Q#b2`p2/ i?�i +1/2 /272+i HBM2b
�`2 Km+? KQ`2 7`2[m2Mi BM bQ7i /`QTH2ib rBi? T`Qi`mbBQMb
i?�M BM bT?2`B+�H /`QTH2ib rBi?Qmi T`Qi`mbBQMb U6B;X a8U#V
(kN)VX

h?2 KQ`T?QHQ;v Q7 2ti2MbBH2 /`QTH2ib Bb /2i2`KBM2/
#v irQ +QMi`QH T�`�K2i2`b, h?2 �+iBpBiv MmK#2` A =
R
√
ζ/KLC +QMi`QHb i?2 /2MbBiv Q7 /Bb+HBM�iBQM HBM2b BM@

bB/2 i?2 #mHF Q7 /`QTH2ib r?BH2 i?2 `�iBQ Q7 2H�biB+ +QM@
bi�Mi iQ bm`7�+2 i2MbBQM Ψ = KLC/Kϕ [m�MiB}2b i?2 2M@
2`;2iB+ +Qbi �bbQ+B�i2/ rBi? M2K�iB+ /27Q`K�iBQMb BM i?2
#mHF +QKT�`2/ iQ /27Q`K�iBQMb Q7 i?2 BMi2`7�+2 U�bbmK@
BM; bm`7�+2 i2MbBQM /QKBM�i2b i?2 #2M/BM; biBzM2bbVX h?2
KQ`T?QHQ;v Q7 /`QTH2ib �b � 7mM+iBQM Q7 A �M/ Ψ Bb b?QrM
BM 6B;X RRX 6Q` p2`v biBz BMi2`7�+2b UΨ ≪ 1V- /`QTH2ib �`2
M2�`Hv bT?2`B+�H �M/ ?Qbi /Bb+HBM�iBQM HBM2b B7 i?2 �+iBpBiv
A Bb bm{+B2MiHv H�`;2 U#Hm2 /B�KQM/b- Tm`TH2 i`B�M;H2bVX
aQ7i BMi2`7�+2b UΨ ≥ 1V ?Qr2p2` �HHQr i?2 7Q`K�iBQM Q7
}M;2`@HBF2 T`Qi`mbBQMb �b bQQM �b /Bb+HBM�iBQM HBM2b �`2
7Q`K2/ BMbB/2 /`QTH2ib Uv2HHQr +B`+H2bVX A7 �+iBp2 7Q`+2b
#2+QK2 Km+? H�`;2` i?�M i?2 T�bbBp2 `2biQ`BM; 7Q`+2 Q7
i?2 BMi2`7�+2- �+iBp2 ~Qrb i2�` �T�`i i?2 /`QTH2i r?B+?
#`2�Fb mT BMiQ bK�HH2` T�`ib UQ`�M;2 b[m�`2b- b22 �HbQ
JQpB2 a8 (kN)VX h?2 bi`2M;i? Q7 T`Qi`mbBQM 7Q`K�iBQM
+�M #2 [m�MiB}2/ #v i?2 ;v`B}+�iBQM BM/2t- r?B+? Bb �
7mM+iBQM Q7 A �M/ Ψ U6B;X a3U�V (kN)VX

6A:X NX 6Q`K�iBQM Q7 }M;2`@HBF2 T`Qi`mbBQMb #v KQiBH2 /Bb+HB@
M�iBQM HBM2b b?QrM #v i?`22 bM�Tb?Qib �i iBK2b t1 < t2 < t3X
S�M2Hb U�V@U+V b?Qr i?2 i?`22@/BK2MbBQM�H /`QTH2i b?�T2 rBi?
+QHQm` +Q/BM; b?QrBM; i?2 HQ+�H bm`7�+2 �HB;MK2Mi Q7 i?2 /B@
`2+iQ` }2H/X .Bb+HBM�iBQM HBM2 b2;K2Mib �`2 +QHQm`2/ �++Q`/BM;
iQ i?2 irBbi �M;H2 β rBi? i?2 b�K2 +QHQm` +Q/BM; �b BM 6B;X eX
U�V .Bb+HBM�iBQM HBM2 rBi? p�`vBM; irBbi �M;H2 β KQp2b iQr�`/b
i?2 BMi2`7�+2X �+iBp2 ~Qr Tmb?2b i?2 BMi2`7�+2 Qmir�`/b +`2@
�iBM; � #mH;2 �HQM; i?2 b2H7@T`QTmHbBQM /B`2+iBQM Q7 i?2 /Bb+HB@
M�iBQM HBM2X U#V h?2 bK�HH T`Qi`mbBQM rB/i? +QK#BM2/ rBi?
BM@TH�M2 �HB;MK2Mi �i i?2 bm`7�+2 bi�#BHBb2b i?2 /Bb+HBM�iBQM
HBM2 BMiQ �M �HKQbi bi`�B;?i +QM};m`�iBQM rBi? β ≈ πX U+V
.Bb+HBM�iBQM HBM2 KQp2b Qmi Q7 i?2 /`QTH2i H2�pBM; #2?BM/ �
/272+i@7`22 T`Qi`mbBQM rBi? �M �HB;M2/ /B`2+iQ` }2H/X .Bb+HBM�@
iBQM HBM2b 2tBi T`Qi`mbBQMb �b M2�`Hv bi`�B;?i HBM2b �M/ /Q MQi
+QHH�Tb2 iQ � bm`7�+2 TQBMi@/272+i �b �+iBp2 �M+?Q`BM; Bb MQi
bi`QM; 2MQm;? iQ 7Q`+2 i?2 +`2�iBQM Q7 � bm`7�+2 TQBMi@/272+iX
S�M2Hb U/V-U2V b?Qr � b+?2K�iB+ /B�;`�K Q7 i?2 /B`2+iQ` }2H/
�M/ �+iBp2 7Q`+2bX h?2 `2/ �``Qr BM T�M2H U/V /2MQi2b i?2 b2H7@
T`QTmHbBQM /B`2+iBQM Q7 i?2 β ≈ π /Bb+HBM�iBQM HBM2bX �b b?QrM
BM T�M2H U+V- /Bb+HBM�iBQMb H2�p2 #2?BM/ �M �`2� Q7 T2`T2M/B+@
mH�` bm`7�+2 �HB;MK2Mi U/�`F `2;BQMbV �i i?2 2M/ Q7 T`Qi`m@
bBQMb r?B+? bHQrHv `2i`�+i /m2 iQ bm`7�+2 i2MbBQM �M/ #2M/BM;
`B;B/BivX aM�Tb?Qib +`2�i2/ 7`QK bBKmH�iBQM rBi? /`QTH2i bBx2
R = 15 �i iBK2b t1 = 71500 t2 = 72500 t3 = 73500- b22 �HbQ
JQpB2 ak (kN)X
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FIG. 14: Snapshot of a contractile drop showing from left to right the local radius, the
mean curvature and the orientation of the director field on the surface. Contractile

droplets which contain disclination lines show stripes of in-plane director alignment on the
surface connecting the endpoints of disclination lines in the bulk (Fig 3). Bend and splay
deformations of the director field in the bulk create comb-shaped deformations along

stripes of in-plane alignment, resulting in a wrinkle pattern.

in-plane alignment, resulting in a surface wrinkle pattern we term active wrinkling (Fig
14). Droplet deformation causes the perpendicularly aligned surface areas between in-plane
stripes to form splay deformations in the bulk, which cause inward pushing, active forces
that create holes. Along the in-plane ridges the mean curvature is negative while in the
centre of holes it is positive. Surface alignment cos(✓) is therefore correlated to the local
mean curvature of the interface where in-plane surface alignment (cos(✓) ⇡ 0) is associated
with points of negative mean curvature while perpendicular surface alignment (cos(✓) ⇡ 1)
is strongest at points of positive mean curvature (Fig 24).

As for the extensile case, the morphology of contractile droplets is determined by activity
number A = R

p
⇣/KLC and elasticity ratio  = KLC/K' (Fig 15). Very sti↵ interfaces

( ⌧ 1) cause droplets to be nearly spherical and host disclination lines if activity A
is su�ciently large (blue diamonds, purple triangles). If interfaces are su�ciently soft
( ⇡ 1), droplets can be either be static, oblate ellipsoids without disclination lines (blue
diamonds), perform an active random walk (yellow circles) or form surface wrinkles (green
stars). For very soft interfaces ( � 1), droplets are static ellipsoids at low activity and
full droplet invagination takes place at larger activity, leading teh droplet to eventually
break-up (orange squares). The degree of invagination and wrinkling is also quantified by
the gyrification index, which varies as a function of A and  (Fig 25 b).
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