Self-propelled topological defects

Julia Yeomans

University of Oxford

Active nematics

- Active turbulence
- Self propelled topological defects

Topological defects in biological shape changes

- from 2D to 3D
- the morphologies of active droplets

Active topological defects in channels

- from laminar flow to active turbulence

Active matter:

takes energy from the environment on a single particle level and uses it to do work.
molecular motors

cells

active colloids

microswimmers

Active turbulence: bacteria

Active turbulence: epithelial cells

Active turbulence: microtubules \& motor proteins

Active turbulence

Fluorescence Confocal Microscopy

Francesc Sagues
Pau Guillamat Jordi Ignes-Mullol

nematic phase

$Q_{i j}=\left\langle n_{i} n_{j}-\frac{\delta_{i j}}{3}\right\rangle$

Continuum equations of liquid crystal hydrodynamics

$$
\left(\partial_{t}+u_{k} \partial_{k}\right) Q_{i j}-S_{i j}=\Gamma H_{i j}
$$

$$
\begin{gathered}
S_{i j}=\left(\lambda E_{i k}+\Omega_{i k}\right)\left(Q_{k j}+\delta_{k j} / 3\right)+ \\
\left(Q_{i k}+\delta_{i k} / 3\right)\left(\lambda E_{k j}-\Omega_{k j}\right)-2 \lambda\left(Q_{i j}+\delta_{i j} / 3\right)\left(Q_{k l} \partial_{k} u_{l}\right) \\
E_{i j}=\left(\partial_{i} u_{j}+\partial_{j} u_{i}\right) / 2 \\
\Omega_{i j}=\left(\partial_{j} u_{i}-\partial_{i} u_{j}\right) / 2 \\
H_{i j}=-\delta \mathcal{F} / \delta Q_{i j}+\left(\delta_{i j} / 3\right) \operatorname{Tr}\left(\delta \mathcal{F} / \delta Q_{k l}\right) \\
\mathcal{F}=K\left(\partial_{k} Q_{i j}\right)^{2} / 2+A Q_{i j} Q_{j i} / 2+B Q_{i j} Q_{j k} Q_{k i} / 3+C\left(Q_{i j} Q_{j i}\right)^{2} / 4
\end{gathered}
$$

Continuum equations of liquid crystal hydrodynamics

$$
\rho\left(\partial_{t}+u_{k} \partial_{k}\right) u_{i}=\partial_{j} \Pi_{i j}
$$

$$
\begin{gathered}
\Pi_{i j}^{v i s c o u s}=2 \mu E_{i j} \\
\Pi_{i j}^{\text {passive }}=-P \delta_{i j}+2 \lambda\left(Q_{i j}+\delta_{i j} / 3\right)\left(Q_{k l} H_{l k}\right)-\lambda H_{i k}\left(Q_{k j}+\delta_{k j} / 3\right) \\
-\lambda\left(Q_{i k}+\delta_{i k} / 3\right) H_{k j}-\partial_{i} Q_{k l} \frac{\delta \mathcal{F}}{\delta \partial_{j} Q_{l k}}+Q_{i k} H_{k j}-H_{i k} Q_{k j} \\
\end{gathered}
$$

Tumbling parameter

Continuum equations of liquid crystal hydrodynamics

$$
\left(\partial_{t}+u_{k} \partial_{k}\right) Q_{i j}-S_{i j}=\Gamma H_{i j}
$$

couples nematic order and shear flows
relaxation to minimum of Landau-de Gennes free energy

$$
\rho\left(\partial_{t}+u_{k} \partial_{k}\right) u_{i}=\partial_{j} \Pi_{i j}
$$

viscous + passive

Goldstein group, Cambridge

Continuum equations of liquid crystal hydrodynamics

$$
\left(\partial_{t}+u_{k} \partial_{k}\right) Q_{i j}-S_{i j}=\Gamma H_{i j}
$$

couples nematic order and shear flows
relaxation to minimum of Landau-de Gennes free energy

$$
\rho\left(\partial_{t}+u_{k} \partial_{k}\right) u_{i}=\partial_{j} \Pi_{i j}
$$

viscous + passive

$$
\left(\partial_{t}+u_{k} \partial_{k}\right) Q_{i j}-S_{i j}=\Gamma H_{i j}
$$

couples nematic order and shear flows
relaxation to minimum of Landau-de Gennes free energy

Active stress => active turbulence

$$
\Pi_{i j}^{\text {active }}=-\zeta Q_{i j}
$$

Gradients in the magnitude or direction of the order parameter induce flow.

Hatwalne, Ramaswamy,
Rao, Simha, PRL 2004

Instability 1: nematic ordering is unstable to bend instabilities (extensile)
splay instabilities
(contractile)

Active turbulence

Microswimmers: E-coli

Flow field and vorticity field from solving the continuum equations

BUT

No real reason for thermodynamic ordering in many active systems

Instability 2: isotropic state is unstable to nematic order

Even if the passive system is isotropic, can still get active turbulence (for extensile rod-like particles or contractile disc-shaped particles)

Active turbulence: topological defects are created and destroyed

Flow fields around $+1 / 2$ defect

L. Giomi

Z. Dogic group

Active nematics:

Gradients in the order parameter => stresses => flows

Active topological defects: the $+1 / 2$ defects are selfpropelled

Active nematics

- Active turbulence
- Self propelled topological defects

Topological defects in biological shape changes

- from 2D to 3D
- the morphologies of active droplets

Active topological defects in channels

- from laminar flow to active turbulence

Thank You

Liam Ruske

Mehrana Nejad

From 2D to 3D

Guillamat, Blanch-Mercader, Kruse, Roux
 bioRxiv preprint 129262

C2C12 myoblasts seeded on small discs

Regions where cells stand on end nucleate at places where two $+1 / 2$ defects approach each other

Meacock, Doostmohammadi,
Foster, Yeomans, Durham
Nature Physics 17205 (2021)

Shape changes in early embryogenesis

From 2D to 3D

2D layer, director and flow field 3D

From 2D to 3D

linear stability analysis:

$$
\begin{aligned}
& \omega_{\text {in }}=\frac{3 \zeta}{4 \eta} \cos 2 \theta-\frac{K}{\gamma} q^{2} \\
& \omega_{\text {out }}=\frac{3 \zeta}{4 \eta} \cos ^{2} \theta-\frac{K}{\gamma} q^{2}
\end{aligned}
$$

From 2D to 3D

From 2D to 3D

snake director field
snake dynamics

active microtubule bundles in a background of nematic colloids

Duclos et al Science 2020

3D: Disclination Lines

cross section of disclination lines

Twist angle: 0
$\pi / 2$
π

3D: Disclination Lines

cross section of disclination lines

Disclination lines in an active droplet

Active anchoring

1. Extensile: in-plane anchoring

1. Extensile: protrusions form where disclination lines meet the surface

disclination lines tend to line up across protrusions

Keber et al Science 2014

2. Contractile: lines of in-plane alignment at surface

Contractile: surface wrinkles

Contractile: surface wrinkles

3. Contractile (small droplets):invagination

(d)

(d)

(b)

(e)

(c)
(f)

Angle between the director and the surface normal $\cos (\theta)$
(a)

(c)

(e)

(b)

(d)

(f)

3D active droplet: behaviour depends on active anchoring
(d)

Extensile: protrusions at $+1 / 2$ surface defects

Contractile: lines of in-plane anchoring joining surface twist defects => wrinked drops
surface bend ring => invagination, random walk

(b)

Active nematics

- Active turbulence
- Self propelled topological defects
review: Doostmohammadi et al Nature Comms. 93246 (2018)

Topological defects in biological shape changes

- from 2D to 3D
- the morphologies of active droplets

Ruske and Yeomans, PRX 11021001 (2021)
Nejad and Yeomans, arxiv 2105.10812

Active topological defects in channels

- from laminar flow to active turbulence

Chandragiri et al. , Physical Review Letters 125148002 (2020)

