

Features of nanoscale thermodynamics

What do the laws of thermodynamics look like when applied to very small systems?

Chris Jarzynski

Institute for Physical Science and Technology Department of Chemistry & Biochemistry Department of Physics

New features of thermodynamics at the nanoscale

- Prominence of fluctuations
- "Violations" of the second law
- Blurred arrow of time
- Feedback control & information processing
- Strong system-environment coupling

Macro- and nanoscale thermodynamic processes

rubber band

RNA strand

Irreversible process (rubber band):

1. Begin in equilibrium

$$\lambda = A$$

 $\lambda = B$

2. Stretch the system

$$\lambda: A \longrightarrow B$$

3. End in equilibrium

W = work performed
$$\geq \Delta F = F_B - F_A$$

Macro- and *nano*scale thermodynamic processes

rubber band

RNA strand

Irreversible process (RNA):

- Begin in equilibrium
- 2. Stretch the system

$$<$$
W $> = average work $\ge \Delta F = F_B - F_A$$

3. End in equilibrium

$$\Delta F = F_B - F_A$$
 $\lambda = B$

 $\lambda = A$

 $\lambda: A \longrightarrow B$

Macro- and nanoscale thermodynamic processes

Fluctuations in W satisfy unexpected laws.

Fluctuation theorems / non-equilibrium work relations

$$\langle e^{-\beta W} \rangle = e^{-\beta \Delta F}$$
 C.J., *PRL* **78**, 2690 (1997)

Fluctuations in W satisfy unexpected laws.

Fluctuation theorems / non-equilibrium work relations

$$\langle e^{-\beta W} \rangle = e^{-\beta \Delta F}$$
 C.J., *PRL* **78**, 2690 (1997)

$$\frac{\rho_F(+W)}{\rho_R(-W)} = \exp[\beta(W - \Delta F)] \quad \text{Crooks, } PRE \, \textbf{60}, \, 2721 \, (1999) \\ [J \, Stat \, Phys \, \textbf{90}, \, 1481 \, (1998)]$$

Unfolding & refolding of ribosomal RNA

$$\frac{\rho_{unfold}(+W)}{\rho_{refold}(-W)} = \exp[\beta(W - \Delta F)]$$

Further experimental verification

Mechanical oscillator

Douarche et al, EPL **70**, 593 (2005)

Trapped colloidal particle
Blickle *et al*, *PRL* **96**, 070603 (2006)

$$\left\langle e^{-\beta W} \right\rangle = e^{-\beta \Delta F}$$

$$\frac{\rho_{unfold}(+W)}{\rho_{refold}(-W)} = \exp[\beta(W - \Delta F)]$$

Protein unfolding

Harris, Song and Kiang, *PRL* **99**, 068101 (2007)

Single electron box

Saira et al, PRL 109, 180601 (2012)

& others ...

Quantum nonequilibrium work relation

 $\left\langle e^{-\beta W} \right\rangle = e^{-\beta \Delta F}$

Mukamel, PRL 90, 170604 (2003)

Kurchan, cond-mat/0007360; Tasaki, cond-mat/0009244

$$E_{n} = \hbar\omega \left(n + \frac{1}{2}\right)$$

$$W = \hbar\omega \left(n_{f} - n_{i}\right) = \hbar\omega \Delta n$$

An et al, Nat. Phys. **11**, 193 (2015)

$$\langle e^{-\beta W} \rangle = 1$$

 $\Delta F = 0$

Implications for the Second Law

$$\langle e^{-\beta W} \rangle = e^{-\beta \Delta F}$$
 implies
$$\begin{cases} \langle W \rangle \ge \Delta F \\ \Pr[W \le \Delta F - \zeta] \le \exp(-\zeta / k_B T) \end{cases}$$

$$\langle e^x \rangle \ge e^{\langle x \rangle}$$

Implications for the Second Law

$$\left\langle e^{-\beta W} \right\rangle = e^{-\beta \Delta F}$$
 implies $\left\{ \begin{aligned} \left\langle W \right\rangle &\geq \Delta F \\ \Pr[W \leq \Delta F - \zeta] \leq \exp(-\zeta/k_B T) \end{aligned} \right.$

What is the probability that the 2nd law is "violated" by at least ζ ?

Implications for the Second Law

$$\left\langle e^{-\beta W} \right\rangle = e^{-\beta \Delta F}$$
 implies $\left\{ \begin{aligned} \left\langle W \right\rangle &\geq \Delta F \\ \Pr[W \leq \Delta F - \zeta] \leq \exp(-\zeta/k_B T) \end{aligned} \right\}$

What is the probability that the 2nd law is "violated" by at least ζ?

$$\Pr[W < \Delta F] \approx 0.65$$
$$\langle W \rangle > \Delta F$$

Guessing the direction of the arrow of time

C.J., *Annu Rev Cond Matt Phys* **2**, 329 (2011)

You are shown a movie depicting a thermodynamic process, A→B. Task: determine whether you are viewing the events in the order in which they actually occurred, or a movie run backward of the reverse process.

Two hypotheses:

The molecule was stretched (F)
The molecule was contracted (R)

$$L(F \mid W) = \frac{1}{1 + \exp[-\beta(W - \Delta F)]}$$

Shirts et al, PRL **91**, 140601 (2003), Maragakis et al, JCP **129**, 024102 (2008)

Guessing the direction of the arrow of time

C.J., *Annu Rev Cond Matt Phys* **2**, 329 (2011)

You are shown a movie depicting a thermodynamic process, A→B. Task: determine whether you are viewing the events in the order in which they actually occurred, or a movie run backward of the reverse process.

$$L(F \mid W) = \frac{1}{1 + \exp[-\beta(W - \Delta F)]}$$

Shirts *et al*, *PRL* **91**, 140601 (2003), Maragakis *et al*, *JCP* **129**, 024102 (2008) Two hypotheses:

The molecule was stretched (F)
The molecule was contracted (R)

Hofmann *et al*, *Phys Status Solidi* **254**, 1600546 (2017)

Feedback control

autonomous

non-autonomous

Maxwell's demon

"... the energy in A is increased and that in B diminished; that is, the hot system has got hotter and the cold colder and yet no work has been done, only the intelligence of a very observant and neat-fingered being has been employed"

J.C. Maxwell, letter to P.G. Tait, Dec. 11, 1867

non-autonomous feedback control

Maxwell's demon

Is a "mechanical" Maxwell demon possible?

M. Smoluchowski, *Phys Z* **13**, 1069 (1912) no! R.P. Feynman, *Lectures*

autonomous feedback control

Maxwell's demon

Is a "mechanical" Maxwell demon possible?

- R. Landauer, *IBM J Res Dev* **5**, 183 (1961)
- O. Penrose, Foundations of Statistical Mechanics (1970) yes, but ...

C.H. Bennett, *Int J Theor Physics* **21**, 905 (1982)

autonomous feedback control

Second Law of Thermodynamics

... with measurement and feedback

$$\langle W \rangle \ge \Delta F - k_B T \langle I \rangle$$

 $\left\langle e^{-\beta W-I}\right\rangle = e^{-\beta \Delta F}$

experiment:

Sagawa & Ueda, PRL 100, 080403 (2008)

Sagawa & Ueda, *PRL* **104**, 090602 (2010)

Toyabe *et al, Nature Phys* **6**, 988 (2010)

Summary

... & others!

C.J., Annu Rev Cond Matt Phys **2**, 329 (2011) (*classical*) Campisi, Hänggi, & Talkner, Rev Mod Phys **83**, 771 (2011) (*quantum*) Sagawa, Progress Theor Phys **127**, 1 (2012) (*information processing*)