
Predictability of viral-host co-evolution
Aleksandra M Walczak

Laboratoire de Physique - ENS, CNRS

work with
Jacopo Marchi, ENS
Michael Lässig, Cologne
Andreas Mayer, ENS
Vijay Balasubramanian, UPenn
Thierry Mora, ENS



integration of 
equations of motion 

+ 
predictive information

I
⇥
inputt�⌧ , responset

⇤

everything predicts

@2
t x = f(x, v) + ⇠

Prediction in living systems
Serena hitting a ball

SE Palmer et al



observations → probabilistic map of sources
→ maximize entropy reduction rate
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exploration - gathering data

exploitation - max 
likelihood search

motion: 
reduce entropy

update
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stochastic equations of motion 
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random new mutations

growth rateinitial frequency of 
mutant

final frequency in 
lineage

sum over 
mutants in 

lineage

growth rate

protein stability

estimated  
immune pressure

missing data 
correction

Prediction in living systems

M. Vergassola et al

flu strain evolutionmale moths searching for femalesSerena hitting a ball

SE Palmer et al

M. Vergassola et al M. Łuksza M. Laessig

everything predicts



Prediction in living systems

everything predicts

FL
U

 S
TR

AI
N

 F
RE

Q
U

EN
CY

YEAR

OBSERVED
PREDICTION

time of prediction 

flu strain evolutionmale moths searching for femalesSerena hitting a ball

FLU
2010

ASIA

FLU 2011
EUROPE

FLU
2012

ASIA

FLU
2012
EUROPE

FLU
2010
EUROPE

B192011

COLD
2012

B19
2012

HSV
2011

COLD
2011

pathogens 
(viruses, bacteria)

receptor 
statistics

time

immunity as prediction? 

SE Palmer et al

M. Vergassola et al M. Łuksza M. Laessig



• evolution of influenza H3N2 
looks linear

Yan, Neher and Shraiman 2019

• one trunk driving evolution

• low diversity, strong selection

• sometimes, splits happen

Yan, Neher and Shraiman 2019

Viral evolution



• antigenic distance = 
similarity of response to 
antibody sera 
(hemmaglutination inhibition)

Smith et al 2004

Bedford et al 2014

• often projected onto 2D map 
(dim. reduction)

Antigenic map



• shape space: space of antibodies covering all possible specificities (Segel and Perelson 1989)

antigens covered 
by both antibodies

shape space

• low-dimensional: dimensions 5 to 8 for all antigens

even lower for given family of targets e.g. HA

(Smith et al 1997)

• antibodies have cross-reactivities

Immune "shape space”



• antibodies and antigens live in same space

Marchi Lässig Mora Walczak 2019
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Yan, Neher and Shraiman 2019

Bedford Rambault Pascual 2012

Rouzine and Rozhnova 2018•  see also

Co-evolution model



 4 evolutionary trends
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(incidence rate =  )5 ⋅ 10−4
Marchi Lässig Mora Walczak 2019

average number of lineages
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virus immune memory
viral fitness

D

∂tn(x, t) = f(x, t)n(x, t) + D∂2
xn + n(x, t)η(x, t)

∂th(x, t) =
1
Nh [n(x, t) − N(t)

h(x, t)
M ]

growth

mutations

demographic 
noise

immunity 
acquisition

compensatory 
memory loss c(x, t) =

1
M ∫ dx′ h(x′ , t)e−|x−x′ |

f(x, t) = ln[R0(1 − c(x, t))M]

fitness

immune coverage

n h

Coarse grained model

time - units of infection cycles

susceptibility of random 
host to strain x

number of injectable hosts

N(t) = ∫ dxn(x, t) ≠ const

M = ∫ dxh(x, t) = const

Nh = const
host population 

size

# memories carried 
by each host

viral population size 
= number of infected hosts

τ =
MNh

N(t)
immune 

turnover time



• simulations:  same behaviour as agent-based model

• link to fitness wave theory ?
Rouzine et al 2003
Tsimring Levin Kessler 1996

Desai Fisher 2007
vfitness wave = v/s

v

σ

σ⊥

Antigenic wave

• non-constant population size → continuous negative drift

n(x, t) = n1(x1 − vt)ϕ(x2, . . . , xd)
• >1 dimension

• distribution of fitness

•    mutations neutral⊥

• ~ constant fitness gradient f ≈ f0 + s(x1 − vt)
•   mutations isotropic (beneficial & deleterious)∥

Dfitness wave = Ds2→



• population size regulated by immune pressure

nh

antigenic coordinate

fitness f
v

vΔt

Δf

vΔt

Δf

ΔN

1
s

immune 
protections

viral population

Population control - main wave direction

Yan, Neher and Shraiman 2019
Rouzine and Rozhnova 2018• non-constant population size → continuous negative drift

f ≈ f0 + (x1− )s vt

∂th(x, t) =
1
Nh [n(x, t) − N(t)

h(x, t)
M ] τ =

MNh

N(t)
immune 

turnover time
→ → N stable

selection 
coefficient

s = |∇f | = M (R1/M
0 − 1)&

population size 
set  by f0 = 0

→ f(x, t) = ln [R0 (1 −
e−u

1 + vτ )
M

] ≈ f0 + su

(R1/M
0 − 1) = vτ(R1/M
0 − 1) = MNhv/N → N/v = MNh (R1/M

0 − 1)
N
Nh

= vs incidence rate→



• population size regulated by immune pressure

nh

antigenic coordinate

fitness f
v

vΔt

Δf

vΔt

Δf

ΔN

• speed regulated by population size (Neher and Hallatschek 2013)

≈ D2/3s1/3 [24 ln(N(Ds2)1/3)]1/3

1
s

fitness

fitness nose

σ

immune 
protections

viral population

Population control - main wave direction

Yan, Neher and Shraiman 2019
Rouzine and Rozhnova 2018• non-constant population size → continuous negative drift

f ≈ f0 + (x1− )s vt

Nh
= vspopulation size selection 

coefficient
s = |∇f | = M (R1/M

0 − 1)&
N

v

→                in terms of model parametersN & v

Dfitness wave = Ds2

vfitness wave = v/s



v

σ

v

N

σ⊥

2σ2
⊥ = 2D × 2T2

T2

2DT2

2DT2

⟨T2⟩ =
1.66σ2

2D
(Neher and 

Hallatschek 2013)

N = Nhvs v ≈ D2/3s1/3 [24 ln(Nhvs(Ds2)1/3)]1/3
fitness f

1
s

Shape of the wave
• comparison to simulations

sv = s2

∂t f = var( f ) = s2σ2

σ2

Fisher’s theorem

→ full charaterisation of the wave



d ⃗x
dt

= ⃗v = v(N )
⃗∇ f

| ⃗∇ f |
+ genetic driftv

c(x, t) = ∫
t

−∞

dt′ 

τ
e− t − t′ 

τ −|x−x(t′ )|

d ⃗x
dt

= ⃗v = v(N )
⃗∇ c

| ⃗∇ c |
+ genetic drift

τ =
MNh

N
∼ [incidence rate]−1

⟨ ̂e(t) ⋅ ̂e(t + Δt)⟩ = e−Δt/tpersist

D

• drift in perpendicular direction reorients wave

• motion driven by fitness gradient

• fitness  ⟺  immune coverage

⃗v

Position of the wave: effective EOM

inertia
angular
diffusion

̂e(t) ∼ ∂tx / |∂tx |



tpersist =
1

4D(1 + (vτ)−1)2
=

̂e(t)

ê(t + Δt)

=
1

4D
R−2/M

0

∂t ̂e = 8D (1 + (vτ)−1)ξ⊥(t)

D

effective diffusion in space of orientations

time for a single virus 
to escape immunity

at large times
⟨ ̂e(t) ⋅ ̂e(t + Δt)⟩ = e−Δt/tpersist

Angular diffusion and persistance time

(R1/M
0 − 1) = vτ

• large D → large N, v → small tpersist

• large R0 or small M → speeds up wave but small tpersist

→ for fixed Nh epidemic waves move faster and 
change course more often (less predictable)

D

simulations

th
eo

ry

tpersist



tpersist =
1

4D(1 + (vτ)−1)2
=

̂e(t)

ê(t + Δt)

=
1

4D
R−2/M

0

∂t ̂e = 8D (1 + (vτ)−1)ξ⊥(t)

D

effective diffusion in space of orientations

time for a single virus 
to escape immunity

at large times

≫
1
v

∼
1

D2/3−ϵ
= tescape

time for the viral 
population to escape 
immunity

⟨ ̂e(t) ⋅ ̂e(t + Δt)⟩ = e−Δt/tpersist

Angular diffusion and persistance time

driven by selected 
mutations (fast) ||

driven by neutral 
mutations (slow)⊥

≫ tcoalescence ∼
1

D1/3−ϵ

← account for immune 
system memory



Δx⊥ ∼
8(d − 1)D

3T2
t3

D
• can one predict where the virus is going?

(see Yan, Neher and Shraiman 2019 for infinite dim.)

D

D

• wave split: when 2 sublineages reach 
 (cross-reactivity range)Δx⊥ ∼ 1

ℒ = ( s3R−2/M
0 D2

(d − 1)v5 )
1/4

ksplit ≈
3
8

v2

4D
e−αℒ

Predictability and splitting

∂2
t x⊥ =

8D
T

ξ⊥(t)
t ≫ T

tpredict : Δx⊥ ∼ cross − reactivity range•     

tpredict ∼ [8(d − 1)D/3]−1/3T2/3

• higher dimensions → more possibilities for 
deviation from course → less predictable

• d small: tpersist > tpredict > tescape

• d large: tpredict ≪ tescape

• splitting rate grows with dimension
→ departure from canalised 
evolution easier

• splitting less likely than deflections



⃗v

θ ∼
t

tpersist

 analytical theory of co-evolution in phenotypic space 

v ≈ D2/3s1/3 [24 ln(NhvD1/3s5/3)]1/3 ≫ D tpersist =
1

4D
R−2/M

0 ksplit ≈
3
8

v2

4D
e−αℒ

ℒ = ( s3R−2/M
0 D2

(d − 1)v5 )
1/4

tsplit ≫ tpersist ≫ tescape

tpredict

effect of immune system

≫ tcoalescence


