A classical integrable interacting model with a GGE description

Leticia F. Cugliandolo

Sorbonne Université Laboratoire de Physique Théorique et Hautes Energies Institut Universitaire de France

leticia@lpthe.jussieu.fr
www.lpthe.jussieu.fr/~leticia/seminars

Granada, España, 2021

Motivation

Isolated quantum systems : experiments and theory \sim 15y ago

A quantum Newton's cradle experiments

cold atoms in isolation

Kinoshita, Wenger & Weiss 06

(Conformal) field **theory** methods for quantum quenches **Calabrese & Cardy 06**

Numerical study of lattice hard core bosons

Rigol, Dunjko, Yurovsky & Olshanii 07 and many others Mostly 1d systems

Questions

Does an isolated quantum system reach some kind of equilibrium?

Boosted by recent interest in

- the dynamics after quantum quenches of cold atomic systems

rôle of interactions (integrable vs. non-integrable)

- many-body localisation

novel effects of quenched disorder

And, an isolated classical system?

The (old) ergodicity question revisited

Our contribution Barbier, LFC, Lozano, Nessi, Picco, Tartaglia 17-21

Quantum quenches

Definition & questions

- Take an **isolated** quantum system with Hamiltonian \hat{H}_0
- Initialize it in, say, $\ket{\psi_0}$ the ground-state of \hat{H}_0 or any $\hat{
 ho}(t_0)$
- Unitary time-evolution $\hat{U} = e^{-\frac{i}{\hbar}\hat{H}t}$ with a Hamiltonian $\hat{H} \neq \hat{H}_0$.

Does the system reach (locally) a steady state? (for $N \to \infty$)

Is it described by a thermal equilibrium density matrix $e^{-\beta \hat{H}}$? Do at least some local observables behave as thermal ones? Does the evolution occur as in equilibrium?

If not, other kinds of density matrices?

Definition & questions

- Take an **isolated** classical system with Hamiltonian H_0 , evolve with H
- Initialize it in, say, ψ_0 a configuration, *e.g.* $\{\vec{q_i}, \vec{p_i}\}_0$ for a particle system ψ_0 could be drawn from a probability distribution, *e.g.* $\mathcal{Z}^{-1} e^{-\beta_0 H_0(\psi_0)}$

Does the system reach a steady state? (in the $N \to \infty$ limit)

Is it described by a thermal equilibrium probability $e^{-\beta H}$? Do at least some local observables behave as thermal ones? Does the evolution occur as in equilibrium?

If not, other kinds of probability distributions?

Definition & questions

In the steady state of a classical macroscopic ($N \to \infty$) model

Time averages
$$\overline{O(t)} \equiv \lim_{\tau \to \infty} \frac{1}{\tau} \int_{t_{st}}^{t_{st}+\tau} dt' O(t')$$

& statistical averages $\langle O \rangle \equiv \int \prod_{i} dq_{i} \prod dp_{i} O(s_{i}, p_{i}) \rho(s_{i}, p_{i})$

should be equal $\overline{O(t)} = \langle O \rangle$ for a generalised micro-canonical measure ρ

in which, in integrable cases, all constants of motion are fixed Yuzbashyan 18

Are local observables characterised by a "canonical" measure? If yes, which one?

Interest in integrable models: strategy & goals

 Choose a sufficiently simple classical *integrable interacting* model with (not just harmonic oscillators)

an interesting *phase diagram* to investigate different *initial conditions* and *quenches* across the *phase transition(s)*

- Solve the dynamics after the quenches
- Build a *Generalised Gibbs Ensemble* (GGE)
- Prove that the asymptotic limit of *local observables* is captured by the GGE

Strategy

Choose a sufficiently simple classical *integrable interacting* model

(not just harmonic oscillators)

with an interesting *phase diagram* to investigate different *initial*

conditions and *quenches* across the *phase transition(s)*

Solve the dynamics after a quench

Build a Generalised Gibbs Ensemble

Prove that the asymptotic limit of local observables is captured by the GGE

Model choice.

Inspiration from

- disordered systems,

- phase ordering kinetics

knowledge

The spherical SK (p = 2) model

Kosterlitz, Thouless & Jones 76

$$V_{J_0}^{(z)}(\{s_i\}) = -\frac{1}{2} \sum_{i \neq j} J_{ij} s_i s_j + \frac{z(\vec{s})}{2} \left(\sum_i s_i^2 - N\right)$$

Fully connected interactions & $s_i \in \mathbb{R}$ Global spherical constraint $|\vec{s}|^2 = \sum_i s_i^2 = N$ imposed on average by a Lagrange multiplier $z(\vec{s})$ Gaussian distributed interaction strengths $J_{ij} = J_{ji}, [J_{ij}] = 0 \& [J_{ij}^2] = J_0^2/(2N)$

Diagonalised effective potential in the basis of eigenvectors $|s_{\mu} = \vec{v}_{\mu} \cdot \vec{s}|$

$$V_{J_0}^{(z)}(\{s_{\mu}\}) = -\frac{1}{2} \sum_{\mu} \lambda_{\mu}^{(0)} s_{\mu}^2 + \frac{z(\vec{s})}{2} \left(\sum_{\mu} s_{\mu}^2 - N\right)$$

The spherical SK (p=2) model

We plan to choose *initial conditions* drawn from the *canonical Gibbs-Boltzmann* equilibrium measure.

Physically:

- the system is in thermal equilibrium with a bath at temperature T_0 until $t=0^-$
- the coupling to the bath is switched off at this instant t=0
- it further evolves in isolation at t > 0

The canonical equilibrium of the spherical SK (p = 2) model

$$\mathcal{Z}(\beta_0 J_0) \propto \int dz \int \prod_{\mu} ds_{\mu} \ e^{-\beta_0 V_{J_0}^{(z)}(\{s_{\mu}\})}$$

Gaussian integrals yield

Kosterlitz, Thouless & Jones 76

$$\left| \langle s_{\mu}^2 \rangle_{\rm eq} = \frac{T_0}{z - \lambda_{\mu}^{(0)}} \right| \text{ with } \sum_{\mu} \langle s_{\mu}^2 \rangle_{\rm eq} \xrightarrow[N \to \infty]{} \int d\lambda \, \rho(\lambda) \, \frac{T_0}{z - \lambda_{\mu}^{(0)}} = N \, \text{ fix } z$$

At $T_0 > T_c = J_0$ all modes $s_{\mu} = \vec{s} \cdot \vec{v}_{\mu}$ are massive $z - \lambda_N^{(0)} > 0$ & $\langle s_{\mu}^2 \rangle_{eq} = \mathcal{O}(1)$ At $T_0 \leq T_c = J_0$ the Nth mode $s_N = \vec{s} \cdot \vec{v}_N$ is massless $\lim_{N \to \infty} (\lambda_N^{(0)} - z) = 0$ and condenses $\langle s_N^2 \rangle_{eq} = q(T_0/J_0)N$

NB spherical constraint is imposed on average

The canonical equilibrium of the spherical SK (p = 2) model

$$\mathcal{Z}(\beta_0 J_0) \propto \int dz \int \prod_{\mu} ds_{\mu} \ e^{-\beta V_{J_0}^{(z)}(\{s_{\mu}\})}$$

The spherical constraint fixes $\langle s_N^2 \rangle_{eq} = qN$ via $\int d\lambda^{(0)} \rho(\lambda^{(0)}) \frac{T_0}{2J_0 - \lambda_{\mu}^{(0)}} + \frac{\langle s_N^2 \rangle_{eq}}{N} = 1$

Two possibilities

At $T_0 \leq T_c = J_0$ the mode $s_N = \vec{s} \cdot \vec{v}_N$ is **massless**

$$\lim_{N \to \infty} (\lambda_N^{(0)} - z) = 0$$

and condenses

$$\langle s_N^2 \rangle_{\rm eq} = q(T_0/J_0)N$$

Kac & Thompson 71, Zannetti 15, Crisanti, Sarracino & Zannetti 19

The canonical equilibrium of the spherical SK (p = 2) model

 $\vec{m} \equiv \langle \vec{s} \rangle_{\rm eq}$

From statistical physics to classical mechanics

t > 0 evolution

Classical dynamics

From spins to a particle moving on the S_{N-1} sphere

Coordinate-momenta pairs $\{\vec{s}, \vec{p}\}$ and Hamiltonian (const w/Lagrange mult.)

$$H_J^{(z)} = E_{\rm kin}(\vec{p}) + V_J(\vec{s}) + \frac{z(\vec{s},\vec{p})}{2} \sum_{\mu=1}^N (s_\mu^2 - N)$$

with the kinetic energy $E_{\rm kin}(\vec{p}) = \frac{1}{2m} \sum_{\mu=1}^N p_\mu^2$

Newton-Hamilton equations

$$\dot{s}_{\mu} = p_{\mu}/m \qquad \dot{p}_{\mu} = -\delta V_J(\vec{s})/\delta s_{\mu} - z(\vec{s}, \vec{p})s_{\mu}$$

An anisotropic harmonic potential energy $V_J(\vec{s}) = -\frac{1}{2} \sum_{i \neq j} J_{ij} s_i s_j = -\frac{1}{2} \sum_{\mu} \lambda_{\mu} s_{\mu}^2$

but $V_J^{(z)}(\vec{s})$ is quartic due to $z(\vec{s},\vec{p})$

Classical dynamics

From spins to a particle moving on the S_{N-1} sphere

Initial conditions averaged constraints

$$\langle \phi \rangle_{i.c.} : \sum_{\mu} \langle s_{\mu}^2 \rangle_{i.c.} - N = 0$$

 $\langle \phi' \rangle_{i.c.} : \sum_{\mu} \langle s_{\mu} p_{\mu} \rangle_{i.c.} = 0$

The initial conditions

The red arrows are different initial conditions

 $\vec{m} \equiv \langle \vec{s} \rangle_{\rm eq}$

Focus on symmetry broken ones for $T_0/J_0 < 1$

Instantaneous quench

Global rescaling of all coupling constants

At time t = 0

$$J_{ij}^{(0)} \mapsto J_{ij} = \frac{J}{J_0} J_{ij}^{(0)}$$

to keep some memory of the initial conditions.

It is equivalent to

$$\lambda_{\mu}^{(0)} \mapsto \lambda_{\mu} = \frac{J}{J_0} \lambda_{\mu}^{(0)}$$

No change in configuration $\{s_{\mu}(0^{-}) = s_{\mu}(0^{+}), p_{\mu}(0^{-}) = p_{\mu}(0^{+})\}$ but macroscopic energy change

$$\Delta E = \begin{cases} > 0 & \text{for} & \frac{J}{J_0} \\ < 0 & & \frac{J}{J_0} \end{cases} \begin{cases} < 1 & \text{Injection} \\ > 1 & \text{Extraction} \end{cases}$$

Control parameters

Total energy change & initial conditions

Quench: total energy change

Instantaneous quench

Mode energy change under $J_0 \mapsto J$

The energies of the modes at the **right edge** of the λ_{μ} spectrum are the more affected ones

These are the softer modes

Neumann's model

1859

Journal

für die

reine und angewandte Mathema***

In zwanglosen Heften.

Als Fortsetzung des von A.L.Crelle

gegründeten Journals

herausgegeben

unter Mitwirkung der Herren

Steiner, Schellbach, Kummer, Kronecker, Weierstrass

von

C. W. Borchardt.

Mit thätiger Beförderung hoher Königlich-Preufsischer Behörden.

Sechs und funfzigster Band. In vier Heften.

Berlin, 1859. Druck und Verlag von Georg Reimer,

Journal of Pure & Applied Math. Crelle Journal

A particle on a sphere under harmonic potentials

De problemate quodam mechanico, quod ad primam integralium ultraellipticorum classem revocatur.

(Auctore C. Neumann, Hallae.)

§. 1.

Problema proponitur. Sint puncti mobilis Coordinatae orthogonales x, y, z; sit $x^2+y^2+z^2=1$

Just the same model with

 $\lambda_{\mu} \neq \lambda_{\nu}$

in spherical SK model ensured by GOE

Thanks to **O. Babelon**

Strict constraint

Neumann's model

Integrability

N constants of motion in involution $\{I_{\mu}, I_{
u}\} = 0$ fixed by the initial conditions

$$I_{\mu} = s_{\mu}^{2} + \frac{1}{mN} \sum_{\nu(\neq\mu)} \frac{(s_{\mu}p_{\nu} - s_{\nu}p_{\mu})^{2}}{\lambda_{\nu} - \lambda_{\mu}}$$

K. Uhlenbeck 82

Modified angular momentum. The notation is such that $s_{\mu} = \vec{s} \cdot \vec{v}_{\mu}$ and $p_{\mu} = \vec{p} \cdot \vec{v}_{\mu}$

$$H_J=E_{
m kin}+V_J=-rac{1}{2}\sum_\mu\lambda_\mu I_\mu$$
 and $N=\sum_\mu I_\mu$ (using $\sum_\mu s_\mu^2=N$ & $\sum_\mu s_\mu p_\mu=0$)

Studies by Avan, Babelon and Talon 90s for \mid finite N

Thermodynamic $N o \infty$ limit?

No canonical GB equilibrium expected but Generalised Gibbs Ensemble

$$\rho_{\text{GGE}}(\vec{s}, \vec{p}) = \mathcal{Z}^{-1}(\{\gamma_{\mu}\}) \ e^{-\sum_{\mu=1}^{N} \gamma_{\mu} I_{\mu}(\vec{s}, \vec{p})}$$
?

How to study the large N dynamics?

Firstly, identify the constants of motion

Barbier, LFC, Lozano, Nessi, Picco & Tartaglia 18-20

The constants of motion

$\langle I_{\mu}(0^{+}) \rangle_{i.c.}$ averaged over the initial measure

NB On the thick orange line the constants are all equal!

The constants of motion

$\langle I_{\mu}(0^{+}) \rangle_{i.c.}$ averaged over the initial measure

NB for $T_0/J_0 > 1$ and $(T_0/J_0)^2 = J/J_0$ the constants are all equal

How to study the large N dynamics? Secondly, analysis of global – macroscopic – observables

Conservative dynamics

on average over randomness & the initial measure

In the $N \to \infty$ limit exact Schwinger-Dyson (DMFT) equations for the global self-correlation and linear response averaged over the $\{\lambda_{\mu}\}$, denoted $[\dots]_{J}$, and the initial conditions, noted $\langle \dots \rangle_{i.c.}$,

$$\begin{split} NC(t,t') &= \sum_{\mu} [\langle s_{\mu}(t) s_{\mu}(t') \rangle_{i.c.}]_{J} & \text{Self-correlation} \\ NC(t,0) &= \sum_{\mu} [\langle s_{\mu}(t) s_{\mu}(0) \rangle_{i.c.}]_{J} & \text{``Fidelity''} \\ NR(t,t') &= \sum_{\mu} [\langle \frac{\delta s_{\mu}(t)}{\delta h_{\mu}(t')} \Big|_{\vec{h}=0} \rangle_{i.c.}]_{J} & \text{Linear response} \end{split}$$

Coupled causal integro-differential equations

$$(m\partial_t^2 - \mathbf{z}_t)R(t, t') = \int dt'' \, \mathbf{\Sigma}(t, t'')R(t'', t') + \delta(t - t')$$

+ two other ones, with terms fixing the initial conditions

Solvable numerically & analytically at long times

The dynamic phase diagram

from Schwinger-Dyson equations

Injection

Extraction

$$\begin{array}{ll} \chi_{\rm st} = 1/T_0 & z_f > \lambda_N = 2J \ \ \text{and} \ \ \lim_{t \gg t_0} C(t,0) = q_0 = 0 \\ \\ \text{II} \ \ \chi_{\rm st} = 1/J & z_f = \lambda_N = 2J \ \ \text{and} \ \ \lim_{t \gg t_0} C(t,0) = q_0 = 0 \\ \\ \text{III} \ \ \chi_{\rm st} = 1/J & z_f = \lambda_N = 2J \ \ \text{and} \ \ \lim_{t \gg t_0} C(t,0) = q_0 > 0 \end{array}$$

Asymptotic analysis

Algebraic approach to $q_0 = \lim_{t \gg t_0} C(t, 0)$ - fidelity

 $T_0/J_0 < 1 \quad J > J_0$ $C(t,0) = q_0 + c t^{-1.5} g(t) \qquad \qquad C(t,0) = c t^{-0.2} g(t)$ the exponent is independent

 $T_0/J_0 > 1$ dependent of parameters

Similar time-dependencies & asymptotics for z(t)

Stationary limit

of macroscopic – global – one-time quantities

The Lagrange multiplier approaches a constant,

$$z(t) = 2[e_{\rm kin}(t) - e_{\rm pot}(t)] \rightarrow z_f$$

so do the kinetic & potential energies,

$$e_{\rm kin}(t) \rightarrow e^f_{\rm kin}$$
 and $e_{\rm pot}(t) \rightarrow e^f_{\rm pot}$

The correlation with the initial condition as well

 $C(t,0) \to q_0$

in all phases (q_0 vanishes in some)

Non-conserved global one-time observables reach constants

Stationary dynamics? Is this GB equilibrium?

No Gibbs-Boltzmann equilibrium

e.g. large energy injection on a condensed state (Sector IV)

$$\chi_{\rm st}(t-t') \equiv \int_{t'}^{t} dt'' \, R_{\rm st}(t,t'') \neq -\beta_f \left[C_{\rm st}(t-t') - C_{\rm st}(0) \right]$$

Stationary dynamics but no FDT at a single temperature **no GB equilibrium**

Not surprising since the model is integrable.

Thirdly, dynamic single mode analysis

to better understand the steady state

Mode dynamics

Non-linear coupling, no average over disorder, any ${\cal N}$

The $s_{\mu}(=\vec{s}\cdot\vec{v}_{\mu})$ with $\mu=1,\ldots,N$ obey parametric oscillator equations

$$m\ddot{s}_{\mu}(t) = -[z(t) - \lambda_{\mu}]s_{\mu}(t)$$

with $z(t) = 2[e_{kin}(t) - e_{pot}(t)]$ & λ_{μ} the eigenvalues of J_{ij} .

The solution is

$$s_{\mu}(t) = s_{\mu}(0) \sqrt{\frac{\Omega_{\mu}(0)}{\Omega_{\mu}(t)}} \cos \int_{0}^{t} dt' \ \Omega_{\mu}(t') + \frac{\dot{s}_{\mu}(0)}{\Omega_{\mu}(0)\Omega_{\mu}(t)} \sin \int_{0}^{t} dt' \ \Omega_{\mu}(t')$$

+ equations for the time-dependent frequencies $\Omega_{\mu}(t)$ and z(t).

Similar to Sotiriadis & Cardy 10 for the quantum O(N) model Solvable numerically for any finite N

The dynamic phase diagram

Looking more carefully at the condensation phenomena

The two averages noted simply $\langle \ldots \rangle$ in the plot

The dynamics on the sphere

in the four Sectors of the dynamic phase diagram

Sector I & Sector II

Sector III

Sector IV

Is there a stationary asymptotic measure? Fourthly, establish the GGE ensemble and compute averages

Asymptotic measure

Is the Generalized Gibbs Ensemble the good one?

The GGE "canonical" measure is

$$\rho_{\rm GGE}(\vec{s}, \vec{p}) = \mathcal{Z}^{-1}(\{\gamma_{\mu}\}) \ e^{-\sum_{\mu=1}^{N} \gamma_{\mu} I_{\mu}(\vec{s}, \vec{p})}$$

with

K. Uhlenbeck 82

$$I_{\mu} = s_{\mu}^{2} + \frac{1}{mN} \sum_{\nu(\neq\mu)} \frac{(s_{\mu}p_{\nu} - s_{\nu}p_{\mu})^{2}}{\lambda_{\nu} - \lambda_{\mu}}$$

(quartic & non-local) and we fix the γ_{μ} on average by imposing

$$\langle I_{\mu} \rangle_{\rm GGE} = \langle I_{\mu} \rangle_{i.c.}$$

NB in interacting quantum integrable models the charges are not known. But we do know them for this model !

The GGE

Harmonic Ansatz

$$\rho_{\text{GGE}}(\{\vec{s}, \vec{p}\}) = \mathcal{Z}^{-1}(\{\gamma_{\mu}\}) e^{-\sum_{\mu=1}^{N} \gamma_{\mu} I_{\mu}(\{\vec{s}, \vec{p}\})}$$

Extensive expression in the exponential $\sum_{\mu=1}^{N} \gamma_{\mu} I_{\mu} = \mathcal{O}(N)$ if $\gamma_{\mu} = \mathcal{O}(1)$ GB measure recovered for $J = J_0$ with $\gamma_{\mu} = -\frac{\beta_0 \lambda_{\mu}}{2}$ since $\sum_{\mu=1}^{N} \frac{\lambda_{\mu}}{2} I_{\mu} = -H_J$

How to calculate $\langle s^2_\mu\rangle_{\rm GGE}$ and $\langle p^2_\mu\rangle_{\rm GGE}$? A plausible guess

$$\langle s_{\mu}^2 \rangle_{\rm GGE} = \frac{T_{\mu}}{z_{\rm GGE} - \lambda_{\mu}} \qquad \langle p_{\mu}^2 \rangle_{\rm GGE} = m T_{\mu}$$

with spherical constraint for z_{GGE} & the mode-temperature spectrum fixed by

$$\langle I(\lambda) \rangle_{i.c.} = \langle I(\lambda) \rangle_{\text{GGE}} = \frac{2T(\lambda)}{z_{\text{GGE}} - \lambda} \left[1 - \int d\lambda' \, \frac{\rho(\lambda')T(\lambda')}{\lambda - \lambda'} \right]$$

another eq. for the N-th mode for condensed i.c. & eqs. for $\{\gamma_{\mu}\}$ Solvable

Dynamics vs GGE

$$\langle s_{\mu}^2 \rangle_{\rm GGE} = \overline{\langle s_{\mu}^2(t) \rangle_{i.c.}}$$
 and $\langle p_{\mu}^2 \rangle_{\rm GGE} = \overline{\langle p_{\mu}^2(t) \rangle_{i.c.}}$?

Dynamics vs GGE

e.g., comparison for quenches in Sector I

 $mJT(\lambda)$ 6 GGE N = 100 — 0.5Dynamics N = 100 — $2.4 \\ f/\langle (\chi)_z d \rangle$ $\gamma(\lambda)$ GGE $N \to \infty$ — $\langle s^2(\lambda) \rangle$ 0 Dynamics N = 1024 – 2 0 22 (b)(a)1.60 22 0 0 $J - \lambda/2$ $J - \lambda/2$

Similar coincidence in Sectors II, III & IV

Interesting features linked to "fluctuations catastrophe" in Sector IV

Harmonic Ansatz confirmed by a saddle-point evaluation of the GGE

Dynamics vs GGE

A special case : $\mathbf{GGE} \mapsto \mathbf{GB}$

The GGE construction yields

 $T_{\mu}=J$ and $\gamma_{\mu}=-\lambda_{\mu}/(2J)$

Therefore

$$-\sum_{\mu} \gamma_{\mu} I_{\mu} = \frac{1}{2J} \sum_{\mu} \lambda_{\mu} I_{\mu} = -\frac{1}{J} H$$

and the GGE reduces to the GB measure at $T_f = J$

Stationarity & FDT OK

Fifthly, can one obtain the mode temperatures with a global dynamic measurement?

Correlation and linear response

Fluctuation-dissipation theorem in Boltzmann equilibrium

$$\begin{split} C(t,t') &= \frac{1}{N} \sum_{\mu=1}^{N} \langle s_{\mu}(t) s_{\mu}(t') \rangle_{i.c.} & \text{self correlation} \\ R(t,t') &= \left. \frac{1}{N} \sum_{\mu=1}^{N} \left. \frac{\delta \langle s_{\mu}(t) \rangle_{i.c.}}{\delta h_{\mu}(t')} \right|_{h=0} & \text{linear response} \end{split}$$

Stationary limit $C(t, t') \mapsto C_{st}(t - t')$ and $R(t, t') \mapsto R_{st}(t - t')$

Fourier transforms

 $\hat{C}(\omega) =$ F.T. $C_{\rm st}(t - t')$ $\hat{R}(\omega) =$ F.T. $R_{\rm st}(t - t')$ Fluctuation-dissipation thm

$$-\frac{\mathrm{Im}\hat{R}(\omega)}{\omega\hat{C}(\omega)}=\beta$$

Frequency domain FDR

The T_{μ} s from the FDR at $\omega_{\mu} = [(z_f - \lambda_{\mu})/m]^{1/2}$ Sector I

A way to measure the mode temperatures with a single measurement

$$\beta_{\rm eff}(\omega_{\mu}) = -{\rm Im}\hat{R}(\omega_{\mu})/(\omega_{\mu}\hat{C}(\omega_{\mu})) = \beta_{\mu}$$

No "partial equilibration" contradiction from the effective temperature perspective. The modes are uncoupled, they do not exchange energy, and can then have different T_{μ} s

Idea in LFC, de Nardis, Foini, Gambassi, Konik & Panfil 17 for quantum

Summary

Goals achieved

In the late times limit taken after the large ${\cal N}$ limit

We solved

- the *global dynamics* with Schwinger-Dyson/
 DMFT eqs.
- the *mode dynamics* with parametric oscillator techniques

of the Soft Neumann model

With the *GGE measure* - The $\{T_{\mu}\}$ are accessed by the FDR $\rho_{\text{GGE}}(\vec{s}, \vec{p}) = \mathcal{Z}^{-1}(\{\gamma_{\mu}\}) e^{-\sum_{\mu} \gamma_{\mu} I_{\mu}(\vec{s}, \vec{p})}$ - we calculated & proved $\langle s_{\mu}^{2} \rangle_{\text{GGE}} = \frac{T_{\mu}}{z_{\text{GGE}} - \lambda_{\mu}} = \overline{\langle s_{\mu}^{2}(t) \rangle_{i.c.}}$ $\langle p_{\mu}^{2} \rangle_{\text{GGE}} = T_{\mu} = \overline{\langle p_{\mu}^{2}(t) \rangle_{i.c.}}$ obtaining also $\{T_{\mu}, \gamma_{\mu}\}$ $\beta_{\text{eff}}(\omega_{\mu}) = -\text{Im} \frac{\hat{R}(\omega_{\mu})}{(\omega_{\mu}\hat{C}(\omega_{\mu}))} = \beta_{\mu}$

Goals achieved

- We exhibited a *classical interacting integrable model*, the *Soft Neumann model* or *Hamiltonian spherical SK model*, the *quench dynamics* of which can be elucidated with different means.
- Rich dynamic phase diagram.
- We managed to calculate (mostly analytically) the GGE measure or, better said, all GGE averaged local observables
- We showed that asymptotic dynamic and GGE averages coincide for $N \to \infty$
- For a special set of parameters the GGE measure reduces to the GB one.
- We can also study the *fluctuations of the constraints* to prove that in I, II, III (with symmetry broken initial conditions) the Soft Neumann Model = the Neumann model with the strict spherical constraint.

Goals achieved

- We exhibited a *classical interacting integrable model*, the *Soft Neumann model* or *Hamiltonian spherical SK model*, the *quench dynamics* of which can be elucidated with different means.
- Rich dynamic phase diagram.
- We managed to calculate (mostly analytically) the GGE measure or, better said, all GGE averaged local observables
- We showed that asymptotic dynamic and GGE averages coincide for $N \rightarrow \infty$
- For a special set of parameters the GGE measure reduces to the GB one.

What next? What about the **spherical ferromagnet**? Problems with degeneracy of eigenvalues? Local spatial structure would be accessible.

Fluctuations

Fluctuations

The dynamics on the sphere

and the GGE averages on the Nth mode phase space

Fluctuations

of the primary and secondary constraints

when the spherical constraint is imposed on average

Integrals of motion

From microcanonical to canonical?

The microcanonical GGE measure is ensured

Yuzbashyan 16

 $\rho_{\text{GGE}}^{\text{micro}}(\{\mathcal{I}_{\nu}\}) = c \prod_{\mu=1}^{N} \delta(I_{\mu}(\{s_{\nu}, p_{\nu}\}) - \mathcal{I}_{\mu})$

Two conditions to prove canonical from microcanonical :

(i) additivity of the energy $ightarrow I_{\mu} = I_{\mu}^{(1)} + I_{\mu}^{(2)}$

(ii) extensivity of the energy $ightarrow I_{\mu} = \mathcal{O}(N)$

e.g., Campa, Dauxois, Ruffo 09 on in/equivalence of ensembles not satisfied in our model by the I_{μ} 's, but maybe combinations?

Still, let's try $\rho_{\text{GGE}}(\{s_{\nu}, p_{\nu}\}) = \mathcal{Z}^{-1}(\{\gamma_{\mu}\}) e^{-\sum_{\mu=1}^{N} \gamma_{\mu} I_{\mu}(\{s_{\nu}, p_{\nu}\})}$

scaling with N

$$\sum_{\mu=1}^{N} \gamma_{\mu} I_{\mu} = \mathcal{O}(N) \quad \text{if } \gamma_{\mu} = \mathcal{O}(1)$$

Integrals of motion

From microcanonical to canonical?

The microcanonical GGE measure is ensured

Yuzbashyan 16

 $\rho_{\text{GGE}}^{\text{micro}}(\{\mathcal{I}_{\nu}\}) = c \prod_{\mu=1}^{N} \delta(I_{\mu}(\{s_{\nu}, p_{\nu}\}) - \mathcal{I}_{\mu})$

Two conditions to prove canonical from microcanonical :

(i) additivity of the energy $ightarrow I_{\mu} = I_{\mu}^{(1)} + I_{\mu}^{(2)}$

(ii) extensivity of the energy $ightarrow I_{\mu} = \mathcal{O}(N)$

e.g., Campa, Dauxois, Ruffo 09 on in/equivalence of ensembles not satisfied in our model I_{μ} by I_{μ} but maybe combinations?

Still, let's try $\rho_{\text{GGE}}(\{s_{\nu}, p_{\nu}\}) = \mathcal{Z}^{-1}(\{\gamma_{\mu}\}) e^{-\sum_{\mu=1}^{N} \gamma_{\mu} I_{\mu}(\{s_{\nu}, p_{\nu}\})}$

GB equilibrium for no quench $\gamma_{\mu} = -\frac{\beta_0 \lambda_{\mu}}{2}$ since $\sum_{\mu=1}^{N} \frac{\lambda_{\mu}}{2} I_{\mu} = -H$

GGE calculation

The mean-fields

 $\langle A^{(p)}_{\mu} \rangle_{\rm GGE}$

Classical dynamics

From spins to a particle moving on an $N\mbox{-dimensional sphere}$

Coordinate-momenta pairs $\{\vec{s}, \vec{p}\}$ and Hamiltonian (const w/Lagrange mult.)

$$H_J^{(z)} = E_{\text{kin}}(\vec{p}) + V_J(\vec{s}) + \frac{z(\vec{s}, \vec{p})}{2} \sum_{i=1}^N (s_i^2 - N)$$

with the kinetic energy $E_{\text{kin}}(\vec{p}) = \frac{1}{2m} \sum_{i=1}^N p_i^2$

Newton-Hamilton equations

$$\dot{s}_i = p_i/m$$
 $\dot{p}_i = -\delta V_J(\vec{s})/\delta s_i - z(\vec{s}, \vec{p})s_i$

The effective potential energy landscape $2V_J^{(z)}(\vec{s}) = -\sum_{i \neq j} J_{ij} s_i s_j + z(s^2 - N)$ has

 $\mu = 1, \dots, N$ saddles (including min/max) the *N* eigenvectors \vec{v}_{μ} of the J_{ij} matrix with $z = \lambda_{\mu}$ & pot. energy density $e_{\text{pot}}^{(\mu)} = -\lambda_{\mu}/2$

 $2 \xrightarrow{\rho_{-2}}_{-2} \xrightarrow{0}_{0} \xrightarrow{2}_{-2}$

 $z(\vec{s}, \vec{p}) = 2 \left[e_{\text{kin}}(\vec{p}) - v_J(\vec{s}) \right]$

 $-2J \qquad \qquad 2J = \lambda_N$

Conservative dynamics

on average over randomness & the initial measure

In the $N \to \infty$ limit exact causal Schwinger-Dyson (DMFT) equations

$$(m\partial_t^2 - \mathbf{z_t})R(t, t_w) = \int dt' \, \Sigma(t, t')R(t', t_w) + \delta(t - t_w)$$
$$(m\partial_t^2 - \mathbf{z_t})C(t, t_w) = \int dt' \left[\Sigma(t, t')C(t', t_w) + \mathbf{D}(t, t')R(t_w, t') \right]$$
$$\left[+ \frac{\beta_0 J_0}{J} \sum_{a=1}^n \mathbf{D}_a(t, 0)C_a(t_w, 0) \right]$$

$$(m\partial_t^2 - \mathbf{z_t})C_a(t,0) = \int dt' \, \Sigma(t,t')C_a(t',0) + \frac{\beta_0 J_0}{J} \sum_{a=1}^n \mathbf{D_b}(t,0)Q_{ab}$$

 $a=1,\ldots,n
ightarrow 0$, replica method to deal with $e^{-eta_0 H_{J_0}^{(z)}}$ and fix Q_{ab}

Initial cond Houghton, Jain, Young 86, Franz, Parisi 95, Barrat, Burioni, Mézard 96

Conservative dynamics

on average over randomness and the initial measure

In the $N \to \infty$ limit exact causal Schwinger-Dyson (DMFT) equations with the post-quench self-energy and vertex

$$\begin{split} D(t, t_w) &= J^2 \ C(t, t_w) & \qquad NC(t, t') = \sum_i [\langle s_i(t) s_i(t') \rangle_{i.c}]_J \\ D_a(t, 0) &= J^2 \ C_a(t, 0) & \qquad \text{with} \quad NC_a(t, 0) = \sum_i [\langle s_i(t) s_i(0) \rangle_{i.c}]_J \\ \Sigma(t, t_w) &= J^2 \ R(t, t_w) & \qquad NR(t, t') = \sum_i [\langle \frac{\delta s_i(t)}{h_i(t')} |_{\vec{h}=0} \rangle_{i.c}]_J \end{split}$$

The Lagrange multiplier is fixed by $C(t,t) = 1 \Rightarrow z(t) = 2[e_{kin}(t) - e_{pot}(t)]$

Initial conditions:

 $\begin{bmatrix} \text{Disordered} & Q_{ab} = \delta_{ab} \\ \text{Condensed} & Q_{ab} = (1-q)\delta_{ab} + q \end{bmatrix}$

Solvable numerically & analytically at long times

Averaged integrals of motion

Properties, scaling and parameter dependence

'Sum rules'
$$\sum_{\mu} I_{\mu} = N$$
 and $\sum_{\mu} \lambda_{\mu} I_{\mu} = -2H_J$

In the $N \to \infty$ limit $\lim_{N \to \infty} I_{\mu} = I(\lambda) = s^2(\lambda) + \frac{1}{m} \oint d\lambda' \ \rho(\lambda') \ \frac{[s(\lambda)p(\lambda') - s(\lambda')p(\lambda)]^2}{\lambda = \lambda'}$

For GB equilibrium initial conditions

$$\langle I(\lambda) \rangle_{i.c.} = \langle s^2(\lambda^{(0)}) \rangle_{i.c.} + \frac{1}{m} \oint d\lambda' \rho(\lambda') \frac{\langle s^2(\lambda^{(0)}) \rangle_{i.c.} \langle p^2(\lambda^{(0)'}) \rangle_{i.c.} + \lambda^{(0)} \leftrightarrow {\lambda^{(0)'}}}{\lambda - \lambda'}$$

with $\langle s^2(\lambda^{(0)}) \rangle_{i.c.} = k_B T_0 / (z_0 - \lambda^{(0)})$ and $\langle p^2(\lambda^{(0)}) \rangle_{i.c.} = m k_B T_0$

and *N*-th mode : **Extended** $\langle I_N \rangle_{i.c.} = \mathcal{O}(1)$ **Condensed** $\langle I_N \rangle_{i.c.} = \mathcal{O}(N)$