
Decadence and Fall of the Academies

Claudio Parmeggiani
University of Milano-Bicocca, Italy (UNIMIB)

c.parmeggiani@campus.unimib.it

31 May 2015

Abstract

The paper examines the structure of a deterministic model that describes the
evolution of “academies”. In particular, bright and average academy members are
distinguished, and rules for membership replacement (a co-optation process) are
established that include a bias for average members. Under these conditions, when
the bright and the average members do not cooperate, the number of bright ones
disappears exponentially. But if an expelling rule is added to the model, a critical
state is reached that allows one to conclude on the fall or rise of the academies.

1 Introduction. The Co-optation Process

Here an “academy” is a generic group of people (the members) where new, entering
members are chosen (co-opted) by the old ones. Then an academy is eventually a learned
society, but also a political party, a medieval guild, the bureaucratic elite of an empire,
or the group of partners of a counseling firm (and so on).

If N(t) is the number of members at time t, we can assume that only NA members
are “bright”while the others NB (= N − NA) are “average” or poor. And we shall
assume that µN(t) members (0 < µ < 1) leave spontaneously (or by natural causes) the
group at time t; consequently αN(t) new members has to be co-opted by the remaining
ones; obviously α is ≥ µ, if not the academy will evaporate.

Under a strong competitive pressure (or if, for example, the members survival is at
a stake) it is reasonable to assume that all members try to co-opt new bright ones,
but sometimes they do some mistake and select average ones; in this case we have only
(α− δA)NA(t) and (α− δB)NB(t) new bright members, selected, respectively, by the
bright and average ones. The new average members will be δANA(t) and δBNB(t), at
time t (Obviously the coeffi cient δA and δB are > 0 and < α). We shall denote this
scenario altruistic, see the Section 2.

On the contrary, in the absence of competition (isolation, protective environment,
monopoly, exclusive access to natural resources) we can assume that the B-members,
in the worst case, (almost) always co-opt average members (αNB(t), at time t) while
the A-members generally chose new bright members, but, again, they sometimes do
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some mistake and select average ones; consequently we have only (α− δA)NA(t) new
bright members and δANA(t) new average ones, at time t. We shall denote this scenario
individualistic, see the Sections 3 and 4.

In any case, the academy’s dynamics can be described by a couple of differential
equations (a “linear plane autonomous system”)

N ′A(t) = a.NA(t) + b.NB(t) (1)

N ′B(t) = c.NA(t) + d.NB(t)

andN ′(t) = (a+ c)NA(t)+(b+ d)NB(t). IfN(t) = const andNA, NB are not constants

then a+ c = b+d = 0 and det
(
a b
c d

)
= a (−b)− b (−a) = 0; the system is singular (see

Sansone and Conti [2], Chapter 2) and there is eventually a critical point
(

b
b−a ,

−a
b−a

)
at

the intersection of the lines

X + Y = 1, Y = −a
b
X. (2)

Here X = NA/N , Y = NB/N , 0 ≤ X,Y ≤ 1 and a/b has to be ≤ 0. The trace of the
system’s matrix is equal to a − b so the critical point can attract (if a < b) or repel (if
a > b) the solutions of the equations.

2 The Altruistic Scenario

In this case, the academy’s dynamics is described by the differential equations

N ′A(t) = (α− δA − µ)NA(t) + (α− δB)NB(t) (3)

N ′B(t) = δANA(t) + (δB − µ)NB(t)

and N ′(t) = (α− µ)N(t). If N(t) = const (α = µ) the system is singular (end of

Section 1) and tr
(
−δA , α− δB
δA , δB − α

)
= − (α+ δA − δB) := −z, where z is always > 0;

the solutions converge towards the critical point

N

(
α− δB

α+ δA − δB
,

δA
α+ δA − δB

)
(4)

which is, generally, quite near to (N, 0) [Figure 1].
In fact we have:

NA(t)

N
=
α− δB
z

+

(
NA(0)

N
− α− δB

z

)
e−zt (5)

so for t → ∞, we arrive, exponentially and independently of the starting point, at a
mixture of (α−δB)N

α+δA−δB A-members and of δAN
α+δA−δB B-members, an obvious result of the

altruistic cooperation (but a fraction of average members inevitably survive).
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Figure 1 - The Altruistic Case. α = µ = 0.10, δA = 0.02, δB = 0.02, z = 0.10

3 The Individualistic Scenario

We shall consider an “extreme”individualistic behavior of the B-members, which always
co-opt B-members; therefore:

N ′A(t) = (α− δA − µ)NA(t) (6)

N ′B(t) = δANA(t) + (α− µ)NB(t)

and again N ′(t) = (α− µ)N(t). If N(t) = const (α = µ), the bright members exponen-
tially disappear (NA(t) = NA(0)e

−δAt) and, anyway, when α > µ, the bright/average
ratio goes rapidly to zero:

NA(t)

NB (t)
=

NA(0).e
−δAt

NB(0) +NA(0) (1− e−δAt)
. (7)

It is possible to devise some modification of the co-optation procedures (co-optation
committees, “objectives”evaluations of the members performances, even random choices)
but, in any case, we can only alter the value of δA (which is always > 0) and the B-
members will rapidly predominate; the academy (isolated, protected or irrelevant) can
nevertheless survive. A paradigmatic example, more or less fictional, is represented by
the “grand Academy of Lagado”, Swift [3] Part III, Chapter 5.
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4 The Expelling Rule

However, to contrast the individualistic behavior (and to improve the altruistic one), a
quite effective (but not so popular) approach is possible: we can prescribe that a certain
number of members, νN(t) (ν is a fixed parameter, 0 < ν < 1), must be expelled from
the academy, at time t. Now it is reasonably to assume that A-members almost always
will expel the average ones (if someone is left) while B-members generally will dismiss the
bright ones. Here we shall consider the “worst”case, when the average always dismiss
the bright:

N ′A(t) = (α− δA − µ)NA(t)− νNB(t) (8)

N ′B(t) = (δA − ν)NA(t) + (α− µ)NB(t)

and N ′(t) = (α− µ− ν)N(t). In the above equations 0 ≤ t < TA(TB) where TA(TB) is
the first zero of NA(NB).
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Figure 2 - The Expelling Rule. α = µ+ ν = 0.16, δA = 0.03, ν = 0.06, z = 0.09

Now when N(t) = const, α = µ + ν and tr
(
ν − δA , −ν
δA − ν , ν

)
= 2ν − δA := z, but if

ν < δA there is no critical point and NA(t) goes exponentially to zero, when t → ∞.
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Then we shall only consider the case ν > δA (the expulsions compensate the wrong
evaluations) where

N

(
ν

2ν − δA
,
ν − δA
2ν − δA

)
(9)

is a critical point (which depend only on δA and ν) [Figure 2] and

NA(t)

N
=
ν

z
+

(
NA(0)

N
− ν

z

)
ezt. (10)

If NA(0)N > ν
2ν−δA (<

ν
2ν−δA ), NA increase (decrease); if

NA(0)
N = ν

2ν−δA , NA and NB are

constants (they don’t leave the critical point). Therefore if, at some time, NAN
2ν−δA
ν < 1

the academy will “decade and fall”, inexorably; otherwise the academy will “rise”.
Obviously the expulsions practice can also improve the altruistic scenario: for an

“extreme”altruistic behavior, where all the members dismiss the average ones (N ′B(t) =
δANA(t) + (δB − µ)NB(t)− νN(t)) and for ν < δA (a small expulsion rate), the critical

point N
(

α−δB
µ−δB+δA ,

δA−ν
µ−δB+δA

)
is shifted nearer to (N, 0). If ν = δA the B-members

exponentially disappear: NA(t)
N = 1 +

(
NA(0)
N − 1

)
e−(α−δB)t.

5 Observations

In presence of an expelling rule, in the individualistic scenario, after some time NA or
NB (if they are not constant) go to zero and the expulsions are not longer practicable.
Then we can, for example, consider a non constant expulsion rate, decreasing when
the academy became more “homogeneous”(almost all members are bright or average).
In this case the problem is non linear, Lotka-Volterra like (see, for example, Murray
[1]), NA+ NB cannot be constant. Anyway the solutions generally stabilize, at infinity,
around the “all bright”or the “all average”solutions.

Perhaps more interesting is the case where there are many degrees of brightness, for
example the bright/average/poor case, or the case of a continuously variable brightness
(which leads to an integro-differential equation. For a “three degrees case”(A/B/C), in
the individualistic scenario, if the expulsion rate is enough high, there is always (on the
plane NA+NB +NC = N) a critical point, but now the solutions generally stabilize, at
infinity, around a mixture of A/B or B/C or C/A members.
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