A SIMPLE ANALYTICAL REPRESENTATION OF THE AIRCRAFT WINGS: CONCAVE-CONVEX CASE

 $\underline{\text{Mihnea Butiurca}},^{1,\,*}$ Valentin Ioan Remus,
^, † Dumitru P. Popescu,^3, † and Stefan Steblea
^4, §

¹ University of Cambridge

²National Institute for Lasers, Plasma and Radiation Physics of Romania ³Department of Mathematical Modeling in Life Sciences, "Gheorghe Mihoc-Caius Iacob", Institute for Mathematical Statistics and Applied Mathematics of the Romanian Academy ⁴"Ion Mincu" National University of Urbanism and Architecture

In this work, we present a simplified representation of an aircraft wing in section and analytically evaluate the lift and drag forces in a laminar flow regime. The intrados and extrados wing profiles are convex surfaces defined by the equation f(x), with h, d, and g as design parameters to optimize for reinforcement learning applications.

$$f(x) = \frac{g}{x^2 + dx + h} \tag{1}$$

[2] Bachiri Abdessamad, Chapitre C - Connaissance avion, Janvier 2014. (ResearchGate).

^[1] J. D. Anderson Jr., Fundamentals of Aerodynamics, 6th ed., McGraw-Hill Education, New York, USA (2017).

^[3] Maria Segui, Matthieu Mantilla, and Ruxandra Botez, Substance: Original Methods for Finding a Wing Shape Airfoil, Substance (2018).

^{*} mb2619@cam.ac.uk

[†] filo_niculescu@yahoo.com

[‡] dghpopescu@gmail.com

[§] stefansteblea@gmail.com